Spaces:
Sleeping
Sleeping
Pclanglais
commited on
Commit
•
b6cc9e1
1
Parent(s):
1fca231
Update app.py
Browse files
app.py
CHANGED
@@ -1,201 +1,66 @@
|
|
1 |
import spaces
|
2 |
import transformers
|
3 |
import re
|
4 |
-
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
|
5 |
-
from vllm import LLM, SamplingParams
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
-
import json
|
9 |
import os
|
10 |
-
import
|
11 |
-
import requests
|
12 |
-
import pandas as pd
|
13 |
-
import difflib
|
14 |
from concurrent.futures import ThreadPoolExecutor
|
15 |
|
16 |
# Define the device
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
24 |
-
|
25 |
-
# Load pre-trained model and tokenizer
|
26 |
-
model_name = "PleIAs/OCRonos-Vintage"
|
27 |
-
model = GPT2LMHeadModel.from_pretrained(model_name)
|
28 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
29 |
-
|
30 |
-
# Set the device to GPU if available, otherwise use CPU
|
31 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
-
model.to(device)
|
33 |
-
|
34 |
-
# CSS for formatting
|
35 |
css = """
|
36 |
<style>
|
37 |
-
|
38 |
-
margin-left: 2em;
|
39 |
-
margin-right: 2em;
|
40 |
-
font-size: 1.2em;
|
41 |
-
}
|
42 |
-
:target {
|
43 |
-
background-color: #CCF3DF;
|
44 |
-
}
|
45 |
-
.source {
|
46 |
-
float: left;
|
47 |
-
max-width: 17%;
|
48 |
-
margin-left: 2%;
|
49 |
-
}
|
50 |
-
.tooltip {
|
51 |
-
position: relative;
|
52 |
-
cursor: pointer;
|
53 |
-
font-variant-position: super;
|
54 |
-
color: #97999b;
|
55 |
-
}
|
56 |
-
.tooltip:hover::after {
|
57 |
-
content: attr(data-text);
|
58 |
-
position: absolute;
|
59 |
-
left: 0;
|
60 |
-
top: 120%;
|
61 |
-
white-space: pre-wrap;
|
62 |
-
width: 500px;
|
63 |
-
max-width: 500px;
|
64 |
-
z-index: 1;
|
65 |
-
background-color: #f9f9f9;
|
66 |
-
color: #000;
|
67 |
-
border: 1px solid #ddd;
|
68 |
-
border-radius: 5px;
|
69 |
-
padding: 5px;
|
70 |
-
display: block;
|
71 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
72 |
-
}
|
73 |
-
.deleted {
|
74 |
-
background-color: #ffcccb;
|
75 |
-
text-decoration: line-through;
|
76 |
-
}
|
77 |
-
.inserted {
|
78 |
-
background-color: #90EE90;
|
79 |
-
}
|
80 |
-
.manuscript {
|
81 |
-
display: flex;
|
82 |
-
margin-bottom: 10px;
|
83 |
-
align-items: baseline;
|
84 |
-
}
|
85 |
-
.annotation {
|
86 |
-
width: 15%;
|
87 |
-
padding-right: 20px;
|
88 |
-
color: grey !important;
|
89 |
-
font-style: italic;
|
90 |
-
text-align: right;
|
91 |
-
}
|
92 |
-
.content {
|
93 |
-
width: 80%;
|
94 |
-
}
|
95 |
-
h2 {
|
96 |
-
margin: 0;
|
97 |
-
font-size: 1.5em;
|
98 |
-
}
|
99 |
-
.title-content h2 {
|
100 |
-
font-weight: bold;
|
101 |
-
}
|
102 |
-
.bibliography-content {
|
103 |
-
color: darkgreen !important;
|
104 |
-
margin-top: -5px;
|
105 |
-
}
|
106 |
-
.paratext-content {
|
107 |
-
color: #a4a4a4 !important;
|
108 |
-
margin-top: -5px;
|
109 |
-
}
|
110 |
</style>
|
111 |
"""
|
112 |
|
113 |
# Helper functions
|
114 |
def generate_html_diff(old_text, new_text):
|
115 |
-
|
116 |
-
|
117 |
-
html_diff = []
|
118 |
-
for word in diff:
|
119 |
-
if word.startswith(' '):
|
120 |
-
html_diff.append(word[2:])
|
121 |
-
elif word.startswith('+ '):
|
122 |
-
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
|
123 |
-
return ' '.join(html_diff)
|
124 |
|
125 |
def preprocess_text(text):
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
160 |
-
split_point += 1
|
161 |
-
if split_point >= len(long_text):
|
162 |
-
split_point = len(long_text) - 1
|
163 |
-
chunks.append(long_text[:split_point].strip())
|
164 |
-
long_text = long_text[split_point:].strip()
|
165 |
-
if long_text:
|
166 |
-
chunks.append(long_text)
|
167 |
-
|
168 |
-
return chunks
|
169 |
-
|
170 |
-
|
171 |
-
# Function to generate text
|
172 |
-
def ocr_correction(prompt, max_new_tokens=600, num_threads=os.cpu_count()):
|
173 |
-
prompt = f"""### Text ###\n{prompt}\n\n\n### Correction ###\n"""
|
174 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
175 |
-
|
176 |
-
# Set the number of threads for PyTorch
|
177 |
-
torch.set_num_threads(num_threads)
|
178 |
-
|
179 |
-
# Generate text
|
180 |
-
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
181 |
-
future = executor.submit(
|
182 |
-
model.generate,
|
183 |
-
input_ids,
|
184 |
-
max_new_tokens=max_new_tokens,
|
185 |
-
pad_token_id=tokenizer.eos_token_id,
|
186 |
-
top_k=50,
|
187 |
-
num_return_sequences=1,
|
188 |
-
do_sample=True,
|
189 |
-
temperature=0.7
|
190 |
-
)
|
191 |
-
output = future.result()
|
192 |
-
|
193 |
-
# Decode and return the generated text
|
194 |
-
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
195 |
-
print(result)
|
196 |
-
|
197 |
-
result = result.split("### Correction ###")[1]
|
198 |
-
return result
|
199 |
|
200 |
# OCR Correction Class
|
201 |
class OCRCorrector:
|
@@ -214,7 +79,7 @@ class TextProcessor:
|
|
214 |
|
215 |
@spaces.GPU(duration=120)
|
216 |
def process(self, user_message):
|
217 |
-
#OCR Correction
|
218 |
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
219 |
|
220 |
# Combine results
|
|
|
1 |
import spaces
|
2 |
import transformers
|
3 |
import re
|
|
|
|
|
4 |
import torch
|
5 |
import gradio as gr
|
|
|
6 |
import os
|
7 |
+
import ctranslate2
|
|
|
|
|
|
|
8 |
from concurrent.futures import ThreadPoolExecutor
|
9 |
|
10 |
# Define the device
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# Load CTranslate2 model and tokenizer
|
14 |
+
model_path = "PleIAs/OCRonos-Vintage-CT2"
|
15 |
+
generator = ctranslate2.Generator(model_path, device=device)
|
16 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("PleIAs/OCRonos-Vintage")
|
17 |
|
18 |
+
# CSS for formatting (unchanged)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
css = """
|
20 |
<style>
|
21 |
+
... (your existing CSS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
</style>
|
23 |
"""
|
24 |
|
25 |
# Helper functions
|
26 |
def generate_html_diff(old_text, new_text):
|
27 |
+
# (unchanged)
|
28 |
+
...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def preprocess_text(text):
|
31 |
+
# (unchanged)
|
32 |
+
...
|
33 |
+
|
34 |
+
def split_text(text, max_tokens=400):
|
35 |
+
encoded = tokenizer.encode(text)
|
36 |
+
splits = []
|
37 |
+
for i in range(0, len(encoded), max_tokens):
|
38 |
+
split = encoded[i:i+max_tokens]
|
39 |
+
splits.append(tokenizer.decode(split))
|
40 |
+
return splits
|
41 |
+
|
42 |
+
# Function to generate text using CTranslate2
|
43 |
+
def ocr_correction(prompt, max_new_tokens=600):
|
44 |
+
splits = split_text(prompt, max_tokens=400)
|
45 |
+
corrected_splits = []
|
46 |
+
|
47 |
+
for split in splits:
|
48 |
+
full_prompt = f"### Text ###\n{split}\n\n\n### Correction ###\n"
|
49 |
+
encoded = tokenizer.encode(full_prompt)
|
50 |
+
prompt_tokens = tokenizer.convert_ids_to_tokens(encoded)
|
51 |
+
|
52 |
+
result = generator.generate_batch(
|
53 |
+
[prompt_tokens],
|
54 |
+
max_length=max_new_tokens,
|
55 |
+
sampling_temperature=0.7,
|
56 |
+
sampling_topk=20,
|
57 |
+
include_prompt_in_result=False
|
58 |
+
)[0]
|
59 |
+
|
60 |
+
corrected_text = tokenizer.decode(result.sequences_ids[0])
|
61 |
+
corrected_splits.append(corrected_text)
|
62 |
+
|
63 |
+
return " ".join(corrected_splits)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# OCR Correction Class
|
66 |
class OCRCorrector:
|
|
|
79 |
|
80 |
@spaces.GPU(duration=120)
|
81 |
def process(self, user_message):
|
82 |
+
# OCR Correction
|
83 |
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
84 |
|
85 |
# Combine results
|