Spaces:
Sleeping
Sleeping
import re | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, AutoModel, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from vllm import LLM, SamplingParams | |
import torch | |
import gradio as gr | |
import json | |
import os | |
import shutil | |
import requests | |
import numpy as np | |
import pandas as pd | |
from chromadb.config import Settings | |
from chromadb.utils import embedding_functions | |
from FlagEmbedding import BGEM3FlagModel | |
from sklearn.metrics.pairwise import cosine_similarity | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
embedding_model = BGEM3FlagModel('BAAI/bge-m3', | |
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation | |
embeddings = np.load("embeddings_tchap.npy") | |
embeddings_data = pd.read_json("embeddings_tchap.json") | |
embeddings_text = embeddings_data["text_with_context"].tolist() | |
# Define the device | |
temperature=0.2 | |
max_new_tokens=1000 | |
top_p=0.92 | |
repetition_penalty=1.7 | |
model_name = "Pclanglais/Tchap" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
model = model.to('cuda:0') | |
system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nTu es Albert, l'agent conversationnel des services publics qui peut décrire des documents de référence ou aider à des tâches de rédaction<|eot_id|>" | |
#Vector search over the database | |
def vector_search(sentence_query): | |
query_embedding = embedding_model.encode(sentence_query, | |
batch_size=12, | |
max_length=256, # If you don't need such a long length, you can set a smaller value to speed up the encoding process. | |
)['dense_vecs'] | |
# Reshape the query embedding to fit the cosine_similarity function requirements | |
query_embedding_reshaped = query_embedding.reshape(1, -1) | |
# Compute cosine similarities | |
similarities = cosine_similarity(query_embedding_reshaped, embeddings) | |
# Find the index of the closest document (highest similarity) | |
closest_doc_index = np.argmax(similarities) | |
# Closest document's embedding | |
closest_doc_embedding = embeddings_text[closest_doc_index] | |
return closest_doc_embedding | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history): | |
text = vector_search(message) | |
message = message + "\n\n### Source ###\n" + text | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
messages = "".join(["".join(["<|start_header_id|>user<|end_header_id|>\n\n"+item[0], "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"+item[1]]) | |
for item in history_transformer_format]) | |
messages = system_prompt + messages | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=1.0, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
return messages | |
# Define the Gradio interface | |
title = "Tchap" | |
description = "Le chatbot du service public" | |
examples = [ | |
[ | |
"Qui peut bénéficier de l'AIP?", # user_message | |
0.7 # temperature | |
] | |
] | |
gr.ChatInterface(predict).launch() |