Spaces:
Sleeping
Sleeping
import transformers | |
import re | |
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline | |
from vllm import LLM, SamplingParams | |
import torch | |
import gradio as gr | |
import json | |
import os | |
import shutil | |
import requests | |
import pandas as pd | |
import difflib | |
# Define the device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# OCR Correction Model | |
ocr_model_name = "Pclanglais/ocronos2" | |
ocr_llm = LLM(ocr_model_name, max_model_len=8128) | |
# Editorial Segmentation Model | |
editorial_model = "PleIAs/Estienne" | |
token_classifier = pipeline( | |
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device | |
) | |
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512) | |
# CSS for formatting | |
css = """ | |
<style> | |
.generation { | |
margin-left: 2em; | |
margin-right: 2em; | |
font-size: 1.2em; | |
} | |
:target { | |
background-color: #CCF3DF; | |
} | |
.source { | |
float: left; | |
max-width: 17%; | |
margin-left: 2%; | |
} | |
.tooltip { | |
position: relative; | |
cursor: pointer; | |
font-variant-position: super; | |
color: #97999b; | |
} | |
.tooltip:hover::after { | |
content: attr(data-text); | |
position: absolute; | |
left: 0; | |
top: 120%; | |
white-space: pre-wrap; | |
width: 500px; | |
max-width: 500px; | |
z-index: 1; | |
background-color: #f9f9f9; | |
color: #000; | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
padding: 5px; | |
display: block; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.1); | |
} | |
.deleted { | |
background-color: #ffcccb; | |
text-decoration: line-through; | |
} | |
.inserted { | |
background-color: #90EE90; | |
} | |
.manuscript { | |
display: flex; | |
margin-bottom: 10px; | |
align-items: baseline; | |
} | |
.annotation { | |
width: 15%; | |
padding-right: 20px; | |
color: grey !important; | |
font-style: italic; | |
text-align: right; | |
} | |
.content { | |
width: 80%; | |
} | |
h2 { | |
margin: 0; | |
font-size: 1.5em; | |
} | |
.title-content h2 { | |
font-weight: bold; | |
} | |
.bibliography-content { | |
color: darkgreen !important; | |
margin-top: -5px; | |
} | |
.paratext-content { | |
color: #a4a4a4 !important; | |
margin-top: -5px; | |
} | |
</style> | |
""" | |
# Helper functions | |
def generate_html_diff(old_text, new_text): | |
d = difflib.Differ() | |
diff = list(d.compare(old_text.split(), new_text.split())) | |
html_diff = [] | |
for word in diff: | |
if word.startswith(' '): | |
html_diff.append(word[2:]) | |
elif word.startswith('+ '): | |
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>') | |
return ' '.join(html_diff) | |
def preprocess_text(text): | |
text = re.sub(r'<[^>]+>', '', text) | |
text = re.sub(r'\n', ' ', text) | |
text = re.sub(r'\s+', ' ', text) | |
return text.strip() | |
def split_text(text, max_tokens=500): | |
parts = text.split("\n") | |
chunks = [] | |
current_chunk = "" | |
for part in parts: | |
if current_chunk: | |
temp_chunk = current_chunk + "\n" + part | |
else: | |
temp_chunk = part | |
num_tokens = len(tokenizer.tokenize(temp_chunk)) | |
if num_tokens <= max_tokens: | |
current_chunk = temp_chunk | |
else: | |
if current_chunk: | |
chunks.append(current_chunk) | |
current_chunk = part | |
if current_chunk: | |
chunks.append(current_chunk) | |
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens: | |
long_text = chunks[0] | |
chunks = [] | |
while len(tokenizer.tokenize(long_text)) > max_tokens: | |
split_point = len(long_text) // 2 | |
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]): | |
split_point += 1 | |
if split_point >= len(long_text): | |
split_point = len(long_text) - 1 | |
chunks.append(long_text[:split_point].strip()) | |
long_text = long_text[split_point:].strip() | |
if long_text: | |
chunks.append(long_text) | |
return chunks | |
def transform_chunks(marianne_segmentation): | |
marianne_segmentation = pd.DataFrame(marianne_segmentation) | |
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator'] | |
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False) | |
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text) | |
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')] | |
html_output = [] | |
for _, row in marianne_segmentation.iterrows(): | |
entity_group = row['entity_group'] | |
result_entity = "[" + entity_group.capitalize() + "]" | |
word = row['word'] | |
if entity_group == 'title': | |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>') | |
elif entity_group == 'bibliography': | |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content bibliography-content">{word}</div></div>') | |
elif entity_group == 'paratext': | |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content paratext-content">{word}</div></div>') | |
else: | |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>') | |
final_html = '\n'.join(html_output) | |
return final_html | |
# OCR Correction Class | |
class OCRCorrector: | |
def __init__(self, system_prompt="Le dialogue suivant est une conversation"): | |
self.system_prompt = system_prompt | |
def correct(self, user_message): | |
sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"]) | |
detailed_prompt = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n" | |
prompts = [detailed_prompt] | |
outputs = ocr_llm.generate(prompts, sampling_params, use_tqdm=False) | |
generated_text = outputs[0].outputs[0].text | |
html_diff = generate_html_diff(user_message, generated_text) | |
return generated_text, html_diff | |
# Editorial Segmentation Class | |
class EditorialSegmenter: | |
def segment(self, text): | |
editorial_text = re.sub("\n", " ¶ ", text) | |
num_tokens = len(tokenizer.tokenize(editorial_text)) | |
if num_tokens > 500: | |
batch_prompts = split_text(editorial_text, max_tokens=500) | |
else: | |
batch_prompts = [editorial_text] | |
out = token_classifier(batch_prompts) | |
classified_list = [] | |
for classification in out: | |
df = pd.DataFrame(classification) | |
classified_list.append(df) | |
classified_list = pd.concat(classified_list) | |
out = transform_chunks(classified_list) | |
return out | |
# Combined Processing Class | |
class TextProcessor: | |
def __init__(self): | |
self.ocr_corrector = OCRCorrector() | |
self.editorial_segmenter = EditorialSegmenter() | |
def process(self, user_message): | |
# Step 1: OCR Correction | |
corrected_text, html_diff = self.ocr_corrector.correct(user_message) | |
# Step 2: Editorial Segmentation | |
segmented_text = self.editorial_segmenter.segment(corrected_text) | |
# Combine results | |
ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>' | |
editorial_result = f'<h2 style="text-align:center">Editorial Segmentation</h2>\n<div class="generation">{segmented_text}</div>' | |
final_output = f"{css}{ocr_result}<br><br>{editorial_result}" | |
return final_output | |
# Create the TextProcessor instance | |
text_processor = TextProcessor() | |
# Define the Gradio interface | |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo: | |
gr.HTML("""<h1 style="text-align:center">LM Document Processing</h1>""") | |
text_input = gr.Textbox(label="Your text", type="text", lines=5) | |
process_button = gr.Button("Process Text") | |
text_output = gr.HTML(label="Processed text") | |
process_button.click(text_processor.process, inputs=text_input, outputs=[text_output]) | |
if __name__ == "__main__": | |
demo.queue().launch() |