NexusRaven2 / benchmark.py
Tonic's picture
Initial Commit
2e1d4b5
import argparse
import os.path
import random
import time
from functools import partial
import evaluate
from tabulate import tabulate
from tqdm import tqdm
from texify.inference import batch_inference
from texify.model.model import load_model
from texify.model.processor import load_processor
from PIL import Image
from texify.settings import settings
import json
import base64
import io
from rapidfuzz.distance import Levenshtein
def normalize_text(text):
# Replace fences
text = text.replace("$", "")
text = text.replace("\[", "")
text = text.replace("\]", "")
text = text.replace("\(", "")
text = text.replace("\)", "")
text = text.strip()
return text
def score_text(predictions, references):
bleu = evaluate.load("bleu")
bleu_results = bleu.compute(predictions=predictions, references=references)
meteor = evaluate.load('meteor')
meteor_results = meteor.compute(predictions=predictions, references=references)
lev_dist = []
for p, r in zip(predictions, references):
lev_dist.append(Levenshtein.normalized_distance(p, r))
return {
'bleu': bleu_results["bleu"],
'meteor': meteor_results['meteor'],
'edit': sum(lev_dist) / len(lev_dist)
}
def image_to_pil(image):
decoded = base64.b64decode(image)
return Image.open(io.BytesIO(decoded))
def load_images(source_data):
images = [sd["image"] for sd in source_data]
images = [image_to_pil(image) for image in images]
return images
def inference_texify(source_data, model, processor):
images = load_images(source_data)
write_data = []
for i in tqdm(range(0, len(images), settings.BATCH_SIZE), desc="Texify inference"):
batch = images[i:i+settings.BATCH_SIZE]
text = batch_inference(batch, model, processor)
for j, t in enumerate(text):
eq_idx = i + j
write_data.append({"text": t, "equation": source_data[eq_idx]["equation"]})
return write_data
def inference_pix2tex(source_data):
from pix2tex.cli import LatexOCR
model = LatexOCR()
images = load_images(source_data)
write_data = []
for i in tqdm(range(len(images)), desc="Pix2tex inference"):
try:
text = model(images[i])
except ValueError:
# Happens when resize fails
text = ""
write_data.append({"text": text, "equation": source_data[i]["equation"]})
return write_data
def image_to_bmp(image):
img_out = io.BytesIO()
image.save(img_out, format="BMP")
return img_out
def inference_nougat(source_data, batch_size=1):
import torch
from nougat.postprocessing import markdown_compatible
from nougat.utils.checkpoint import get_checkpoint
from nougat.utils.dataset import ImageDataset
from nougat.utils.device import move_to_device
from nougat import NougatModel
# Load images, then convert to bmp format for nougat
images = load_images(source_data)
images = [image_to_bmp(image) for image in images]
predictions = []
ckpt = get_checkpoint(None, model_tag="0.1.0-small")
model = NougatModel.from_pretrained(ckpt)
if settings.TORCH_DEVICE_MODEL != "cpu":
move_to_device(model, bf16=settings.CUDA, cuda=settings.CUDA)
model.eval()
dataset = ImageDataset(
images,
partial(model.encoder.prepare_input, random_padding=False),
)
# Batch sizes higher than 1 explode memory usage on CPU/MPS
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
pin_memory=True,
shuffle=False,
)
for idx, sample in tqdm(enumerate(dataloader), desc="Nougat inference", total=len(dataloader)):
model.config.max_length = settings.MAX_TOKENS
model_output = model.inference(image_tensors=sample, early_stopping=False)
output = [markdown_compatible(o) for o in model_output["predictions"]]
predictions.extend(output)
return predictions
def main():
parser = argparse.ArgumentParser(description="Benchmark the performance of texify.")
parser.add_argument("--data_path", type=str, help="Path to JSON file with source images/equations", default=os.path.join(settings.DATA_DIR, "bench_data.json"))
parser.add_argument("--result_path", type=str, help="Path to JSON file to save results to.", default=os.path.join(settings.DATA_DIR, "bench_results.json"))
parser.add_argument("--max", type=int, help="Maximum number of images to benchmark.", default=None)
parser.add_argument("--pix2tex", action="store_true", help="Run pix2tex scoring", default=False)
parser.add_argument("--nougat", action="store_true", help="Run nougat scoring", default=False)
args = parser.parse_args()
source_path = os.path.abspath(args.data_path)
result_path = os.path.abspath(args.result_path)
os.makedirs(os.path.dirname(result_path), exist_ok=True)
model = load_model()
processor = load_processor()
with open(source_path, "r") as f:
source_data = json.load(f)
if args.max:
random.seed(1)
source_data = random.sample(source_data, args.max)
start = time.time()
predictions = inference_texify(source_data, model, processor)
times = {"texify": time.time() - start}
text = [normalize_text(p["text"]) for p in predictions]
references = [normalize_text(p["equation"]) for p in predictions]
scores = score_text(text, references)
write_data = {
"texify": {
"scores": scores,
"text": [{"prediction": p, "reference": r} for p, r in zip(text, references)]
}
}
if args.pix2tex:
start = time.time()
predictions = inference_pix2tex(source_data)
times["pix2tex"] = time.time() - start
p_text = [normalize_text(p["text"]) for p in predictions]
p_scores = score_text(p_text, references)
write_data["pix2tex"] = {
"scores": p_scores,
"text": [{"prediction": p, "reference": r} for p, r in zip(p_text, references)]
}
if args.nougat:
start = time.time()
predictions = inference_nougat(source_data)
times["nougat"] = time.time() - start
n_text = [normalize_text(p) for p in predictions]
n_scores = score_text(n_text, references)
write_data["nougat"] = {
"scores": n_scores,
"text": [{"prediction": p, "reference": r} for p, r in zip(n_text, references)]
}
score_table = []
score_headers = ["bleu", "meteor", "edit"]
score_dirs = ["⬆", "⬆", "⬇", "⬇"]
for method in write_data.keys():
score_table.append([method, *[write_data[method]["scores"][h] for h in score_headers], times[method]])
score_headers.append("time taken (s)")
score_headers = [f"{h} {d}" for h, d in zip(score_headers, score_dirs)]
print()
print(tabulate(score_table, headers=["Method", *score_headers]))
print()
print("Higher is better for BLEU and METEOR, lower is better for edit distance and time taken.")
print("Note that pix2tex is unbatched (I couldn't find a batch inference method in the docs), so time taken is higher than it should be.")
with open(result_path, "w") as f:
json.dump(write_data, f, indent=4)
if __name__ == "__main__":
main()