Spaces:
Running
on
Zero
Running
on
Zero
improve interface and ZeroGPU logic
Browse files
app.py
CHANGED
@@ -1,23 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
-
from globe import title, description, customtool
|
5 |
import spaces
|
6 |
|
7 |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Instruct"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
10 |
|
11 |
-
# # Extract config info from model's configuration
|
12 |
-
# config_info = model.config
|
13 |
-
|
14 |
-
# # Create a Markdown string to display the complete model configuration information
|
15 |
-
# model_info_md = "### Model Configuration: Mistral-NeMo-Minitron-8B-Instruct\n\n"
|
16 |
-
# for key, value in config_info.to_dict().items():
|
17 |
-
# model_info_md += f"- **{key.replace('_', ' ').capitalize()}**: {value}\n"
|
18 |
-
|
19 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
20 |
-
# pipe.tokenizer = tokenizer
|
21 |
|
22 |
def create_prompt(system_message, user_message, tool_definition="", context=""):
|
23 |
if tool_definition:
|
@@ -43,22 +34,13 @@ def generate_response(message, history, system_message, max_tokens, temperature,
|
|
43 |
full_prompt = create_prompt(system_message, message, tool_definition, context)
|
44 |
|
45 |
if use_pipeline:
|
46 |
-
|
47 |
-
response = pipe(prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stop_strings=["<extra_id_1>"])[0]['generated_text']
|
48 |
else:
|
49 |
-
|
50 |
-
[
|
51 |
-
{"role": "system", "content": system_message},
|
52 |
-
{"role": "user", "content": message},
|
53 |
-
],
|
54 |
-
tokenize=True,
|
55 |
-
add_generation_prompt=True,
|
56 |
-
return_tensors="pt"
|
57 |
-
)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
output_ids = model.generate(
|
61 |
-
|
62 |
max_new_tokens=max_tokens,
|
63 |
temperature=temperature,
|
64 |
top_p=top_p,
|
@@ -84,12 +66,11 @@ with gr.Blocks() as demo:
|
|
84 |
with gr.Column(scale=1):
|
85 |
with gr.Group():
|
86 |
gr.Markdown(presentation1)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
with gr.Row():
|
91 |
-
with gr.Column(scale=
|
92 |
-
chatbot = gr.Chatbot(label="🤖 Mistral-NeMo", height=400)
|
93 |
msg = gr.Textbox(label="User Input", placeholder="Ask a question or request a task...")
|
94 |
with gr.Accordion(label="🧪Advanced Settings", open=False):
|
95 |
system_message = gr.Textbox(
|
@@ -111,13 +92,16 @@ with gr.Blocks() as demo:
|
|
111 |
with gr.Column(visible=False) as tool_options:
|
112 |
tool_definition = gr.Code(
|
113 |
label="Tool Definition (JSON)",
|
114 |
-
value=
|
115 |
lines=15,
|
116 |
language="json"
|
117 |
)
|
118 |
with gr.Row():
|
119 |
clear = gr.Button("Clear")
|
120 |
send = gr.Button("Send")
|
|
|
|
|
|
|
121 |
|
122 |
def user(user_message, history):
|
123 |
return "", history + [[user_message, None]]
|
@@ -143,5 +127,5 @@ with gr.Blocks() as demo:
|
|
143 |
)
|
144 |
|
145 |
if __name__ == "__main__":
|
146 |
-
demo.queue
|
147 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
from globe import title, description, customtool, presentation1, presentation2, joinus
|
5 |
import spaces
|
6 |
|
7 |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Instruct"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
12 |
|
13 |
def create_prompt(system_message, user_message, tool_definition="", context=""):
|
14 |
if tool_definition:
|
|
|
34 |
full_prompt = create_prompt(system_message, message, tool_definition, context)
|
35 |
|
36 |
if use_pipeline:
|
37 |
+
response = pipe(full_prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True)[0]['generated_text']
|
|
|
38 |
else:
|
39 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
with torch.no_grad():
|
42 |
output_ids = model.generate(
|
43 |
+
inputs.input_ids,
|
44 |
max_new_tokens=max_tokens,
|
45 |
temperature=temperature,
|
46 |
top_p=top_p,
|
|
|
66 |
with gr.Column(scale=1):
|
67 |
with gr.Group():
|
68 |
gr.Markdown(presentation1)
|
69 |
+
with gr.Column(scale=1):
|
70 |
+
with gr.Group():
|
71 |
+
gr.Markdown(joinus)
|
72 |
with gr.Row():
|
73 |
+
with gr.Column(scale=1):
|
|
|
74 |
msg = gr.Textbox(label="User Input", placeholder="Ask a question or request a task...")
|
75 |
with gr.Accordion(label="🧪Advanced Settings", open=False):
|
76 |
system_message = gr.Textbox(
|
|
|
92 |
with gr.Column(visible=False) as tool_options:
|
93 |
tool_definition = gr.Code(
|
94 |
label="Tool Definition (JSON)",
|
95 |
+
value=customtool,
|
96 |
lines=15,
|
97 |
language="json"
|
98 |
)
|
99 |
with gr.Row():
|
100 |
clear = gr.Button("Clear")
|
101 |
send = gr.Button("Send")
|
102 |
+
with gr.Column(scale=1):
|
103 |
+
chatbot = gr.Chatbot(label="🤖 Mistral-NeMo", height=400)
|
104 |
+
|
105 |
|
106 |
def user(user_message, history):
|
107 |
return "", history + [[user_message, None]]
|
|
|
127 |
)
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
+
demo.queue()
|
131 |
+
demo.launch()
|