MultiMedTulu / app.py
Tonic's picture
Update app.py
8c49431
from gradio_client import Client
import numpy as np
import gradio as gr
import requests
import json
import dotenv
import soundfile as sf
import time
import textwrap
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import torch
import os
import uuid
welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
🗣️📝 This is an educational and accessible conversational tool.
### How To Use ⚕🗣️😷MultiMed⚕:
🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text!
📚🌟💼 that uses [allenai/tulu-2-dpo-13b](https://huggingface.co/allenai/tulu-2-dpo-13b) & [Tonic/mistralmed](https://huggingface.co/Tonic/mistralmed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval w/ [Facebook/Seamless-m4t](https://huggingface.co/facebook/hf-seamless-m4t-large) for audio translation & accessibility.
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
"""
languages = {
"English": "eng",
"Modern Standard Arabic": "arb",
"Bengali": "ben",
"Catalan": "cat",
"Czech": "ces",
"Mandarin Chinese": "cmn",
"Welsh": "cym",
"Danish": "dan",
"German": "deu",
"Estonian": "est",
"Finnish": "fin",
"French": "fra",
"Hindi": "hin",
"Indonesian": "ind",
"Italian": "ita",
"Japanese": "jpn",
"Korean": "kor",
"Maltese": "mlt",
"Dutch": "nld",
"Western Persian": "pes",
"Polish": "pol",
"Portuguese": "por",
"Romanian": "ron",
"Russian": "rus",
"Slovak": "slk",
"Spanish": "spa",
"Swedish": "swe",
"Swahili": "swh",
"Telugu": "tel",
"Tagalog": "tgl",
"Thai": "tha",
"Turkish": "tur",
"Ukrainian": "ukr",
"Urdu": "urd",
"Northern Uzbek": "uzn",
"Vietnamese": "vie"
}
# Global variables to hold component references
components = {}
dotenv.load_dotenv()
seamless_client = Client("facebook/seamless_m4t")
tulu_client = Client("https://tonic1-tulu.hf.space/--replicas/kdnsz/")
HuggingFace_Token = os.getenv("HuggingFace_Token")
hf_token = os.getenv("HuggingFace_Token")
device = "cuda" if torch.cuda.is_available() else "cpu"
image_description = ""
# audio_output = ""
# global markdown_output
# global audio_output
def check_hallucination(assertion, citation):
api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
header = {"Authorization": f"Bearer {hf_token}"}
payload = {"inputs": f"{assertion} [SEP] {citation}"}
response = requests.post(api_url, headers=header, json=payload, timeout=120)
output = response.json()
output = output[0][0]["score"]
return f"**hallucination score:** {output}"
# Define the API parameters
vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {hf_token}"}
# Function to query the API
def query(payload):
response = requests.post(vapi_url, headers=headers, json=payload)
return response.json()
# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
# Combine the inputs
combined_input = f"{input1}. {input2}"
# Make the API call
output = query({"inputs": combined_input})
# Extract the score from the output
score = output[0][0]['score']
# Generate a label based on the score
if score < 0.5:
label = f"🔴 High risk. Score: {score:.2f}"
else:
label = f"🟢 Low risk. Score: {score:.2f}"
return label
def save_audio(audio_input, output_dir="saved_audio"):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Extract sample rate and audio data
sample_rate, audio_data = audio_input
# Generate a unique file name
file_name = f"audio_{int(time.time())}.wav"
file_path = os.path.join(output_dir, file_name)
# Save the audio file
sf.write(file_path, audio_data, sample_rate)
return file_path
def save_image(image_input, output_dir="saved_images"):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Assuming image_input is a NumPy array
if isinstance(image_input, np.ndarray):
# Convert NumPy arrays to PIL Image
image = Image.fromarray(image_input)
# Generate a unique file name
file_name = f"image_{int(time.time())}.png"
file_path = os.path.join(output_dir, file_name)
# Save the image file
image.save(file_path)
return file_path
else:
raise ValueError("Invalid image input type")
def process_image(image_file_path):
client = Client("https://adept-fuyu-8b-demo.hf.space/--replicas/pqjvl/")
"""
Process the image using the Gradio client.
"""
try:
# Use the Gradio client to predict
result = client.predict(
image_file_path, # File path of the image
True, # Enable detailed captioning
fn_index=2 # Function index for the Gradio model
)
return result
except Exception as e:
return f"Error occurred during image processing: {e}"
def process_speech(input_language, audio_input):
"""
processing sound using seamless_m4t
"""
if audio_input is None:
return "no audio or audio did not save yet \nplease try again ! "
print(f"audio : {audio_input}")
print(f"audio type : {type(audio_input)}")
out = seamless_client.predict(
"S2TT",
"file",
None,
audio_input,
"",
input_language,
"English",
api_name="/run",
)
out = out[1] # get the text
try:
return f"{out}"
except Exception as e:
return f"{e}"
def is_base64(s):
try:
return base64.b64encode(base64.b64decode(s)) == s.encode()
except Exception:
return False
def convert_text_to_speech(input_text: str, source_language: str, target_language: str) -> tuple[str, str]:
client = Client("https://facebook-seamless-m4t.hf.space/--replicas/8cllp/")
try:
# Make a prediction request to the client
result = client.predict(
"T2ST",
"text", # Since we are doing text-to-speech
None,
None,
input_text,
source_language,
target_language,
api_name="/run"
)
# Print or log the raw API response for inspection
print("Raw API Response:", result)
# Initialize variables
translated_text = ""
audio_file_path = ""
# Process the result
if result:
for item in result:
if isinstance(item, str):
# Check if the item is a URL pointing to an audio file or a base64 encoded string
if any(ext in item.lower() for ext in ['.mp3', '.wav', '.ogg']) or is_base64(item):
if not audio_file_path: # Store only the first audio file path or base64 string
audio_file_path = item
else:
# Concatenate the translated text
translated_text += item + " "
return audio_file_path, translated_text.strip()
except Exception as e:
print(f"Error in text-to-speech conversion: {str(e)}")
return None, f"Error in text-to-speech conversion: {str(e)}"
def query_vectara(text):
user_message = text
# Read authentication parameters from the .env file
customer_id = os.getenv('CUSTOMER_ID')
corpus_id = os.getenv('CORPUS_ID')
api_key = os.getenv('API_KEY')
# Define the headers
api_key_header = {
"customer-id": customer_id,
"x-api-key": api_key
}
# Define the request body in the structure provided in the example
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 25,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
# Make the API request using Gradio
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body, # Use json to automatically serialize the request body
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
# Limit to top 5 sources.
for source in response_set.get('response', [])[:5]:
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
def process_summary_with_tulu(summary):
# Define the parameters for the Tulu Gradio client API call
your_message = summary
assistant_message = "You are a medical instructor. Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
max_new_tokens = 550
temperature = 0.4
top_p = 0.9
repetition_penalty = 0.9
advanced = True
# Initialize the Tulu client
tulu_client = Client("https://tonic1-tulu.hf.space/--replicas/xh5ff/")
# Make the API call
result = tulu_client.predict(
your_message,
assistant_message,
max_new_tokens,
temperature,
top_p,
repetition_penalty,
advanced,
fn_index=0
)
# Process the result
response_text = result if isinstance(result, str) else "Error in processing"
return response_text
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
try:
combined_text = ""
markdown_output = ""
image_text = ""
language_code = None
# Convert input language to its code
if input_language and input_language in languages:
language_code = languages[input_language]
# Debugging print statement
print(f"Image Input Type: {type(image_input)}, Audio Input Type: {type(audio_input)}")
# Process image input
if image_input is not None:
# Convert image_input to a file path
image_file_path = save_image(image_input)
image_text = process_image(image_file_path)
combined_text += "\n\n**Image Input:**\n" + image_text
# Process audio input
elif audio_input is not None:
audio_file_path = save_audio(audio_input)
audio_text = process_speech(input_language, audio_file_path)
combined_text += "\n\n**Audio Input:**\n" + audio_text
# Process text input
elif text_input is not None and text_input.strip():
combined_text += "The user asks the following to his health adviser: " + text_input
# Check if combined text is empty
else:
return "Error: Please provide some input (text, audio, or image)."
# Append the original image description in Markdown
if image_text:
markdown_output += "\n### Original Image Description\n"
markdown_output += image_text + "\n"
# Use the text to query Vectara
vectara_response_json = query_vectara(combined_text)
# Parse the Vectara response
vectara_response = json.loads(vectara_response_json)
summary = vectara_response.get('summary', 'No summary available')
sources_info = vectara_response.get('sources', [])
# Format Vectara response in Markdown
markdown_output = "### Vectara Response Summary\n"
markdown_output += f"* **Summary**: {summary}\n"
markdown_output += "### Sources Information\n"
for source in sources_info:
markdown_output += f"* {source}\n"
# Process the summary with Tulu
final_response = process_summary_with_tulu(summary)
# Convert translated text to speech and get both audio file and text
target_language = "English" # Set the target language for the speech
audio_output, translated_text = convert_text_to_speech(final_response, target_language, input_language)
# Evaluate hallucination
hallucination_label = evaluate_hallucination(final_response, summary)
# Add final response and hallucination label to Markdown output
markdown_output += "\n### Processed Summary with Tulu\n"
markdown_output += final_response + "\n"
markdown_output += "\n### Hallucination Evaluation\n"
markdown_output += f"* **Label**: {hallucination_label}\n"
markdown_output += "\n### Translated Text\n"
markdown_output += translated_text + "\n"
return markdown_output, audio_output
except Exception as e:
return f"Error occurred during processing: {e}. No hallucination evaluation.", None
def clear():
# Return default values for each component
return "English", None, None, "", None
def create_interface():
# with gr.Blocks(theme='ParityError/Anime') as iface:
with gr.Blocks(theme='ParityError/Anime') as interface:
# Display the welcome message
gr.Markdown(welcome_message)
# Extract the full names of the languages
language_names = list(languages.keys())
# Add a 'None' or similar option to represent no selection
input_language_options = ["None"] + language_names
# Create a dropdown for language selection
input_language = gr.Dropdown(input_language_options, label="Select the language", value="English", interactive=True)
with gr.Accordion("Use Voice", open=False) as voice_accordion:
audio_input = gr.Audio(label="Speak")
audio_output = gr.Markdown(label="Output text") # Markdown component for audio
gr.Examples([["audio1.wav"], ["audio2.wav"], ], inputs=[audio_input])
with gr.Accordion("Use a Picture", open=False) as picture_accordion:
image_input = gr.Image(label="Upload image")
image_output = gr.Markdown(label="Output text") # Markdown component for image
gr.Examples([["image1.png"], ["image2.jpeg"], ["image3.jpeg"], ], inputs=[image_input])
with gr.Accordion("MultiMed", open=False) as multimend_accordion:
text_input = gr.Textbox(label="Use Text", lines=3, placeholder="I have had a sore throat and phlegm for a few days and now my cough has gotten worse!")
gr.Examples([
["What is the proper treatment for buccal herpes?"],
["I have had a sore throat and hoarse voice for several days and now a strong cough recently "],
["How does cellular metabolism work TCA cycle"],
["What special care must be provided to children with chicken pox?"],
["When and how often should I wash my hands?"],
["بکل ہرپس کا صحیح علاج کیا ہے؟"],
["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
], inputs=[text_input])
text_output = gr.Markdown(label="MultiMed")
audio_output = gr.Audio(label="Audio Out", type="filepath")
text_button = gr.Button("Use MultiMed")
text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, audio_output])
clear_button = gr.Button("Clear")
clear_button.click(clear, inputs=[], outputs=[input_language, audio_input, image_input, text_output, audio_output])
return interface
app = create_interface()
app.launch(show_error=True, debug=True)