Spaces:
Running
on
Zero
Running
on
Zero
add gradio interface
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Llava Video
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Llava Video
|
3 |
+
emoji: 🌋📹
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -25,7 +25,26 @@ import tempfile
|
|
25 |
import os
|
26 |
import shutil
|
27 |
#warnings.filterwarnings("ignore")
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def load_video(video_path, max_frames_num, fps=1, force_sample=False):
|
30 |
if max_frames_num == 0:
|
31 |
return np.zeros((1, 336, 336, 3))
|
@@ -94,14 +113,17 @@ def gradio_interface(video_file, question):
|
|
94 |
return response
|
95 |
|
96 |
with gr.Blocks() as demo:
|
97 |
-
gr.Markdown(
|
98 |
-
gr.Markdown("Upload a video and ask a question about it.")
|
99 |
-
|
100 |
with gr.Row():
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
105 |
output = gr.Textbox(label="Response")
|
106 |
|
107 |
submit_button.click(
|
|
|
25 |
import os
|
26 |
import shutil
|
27 |
#warnings.filterwarnings("ignore")
|
28 |
+
title = "# 🙋🏻♂️Welcome to 🌟Tonic's 🌋📹LLaVA-Video!"
|
29 |
+
description1 ="""The **🌋📹LLaVA-Video-7B-Qwen2** is a 7B parameter model trained on the 🌋📹LLaVA-Video-178K dataset and the LLaVA-OneVision dataset. It is [based on the **Qwen2 language model**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), supporting a context window of up to 32K tokens. The model can process and interact with images, multi-images, and videos, with specific optimizations for video analysis.
|
30 |
+
This model leverages the **SO400M vision backbone** for visual input and Qwen2 for language processing, making it highly efficient in multi-modal reasoning, including visual and video-based tasks.
|
31 |
+
🌋📹LLaVA-Video has larger variants of [32B](https://huggingface.co/lmms-lab/LLaVA-NeXT-Video-32B-Qwen) and [72B](https://huggingface.co/lmms-lab/LLaVA-Video-72B-Qwen2) and with a [variant](https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only only trained on the new synthetic data
|
32 |
+
For further details, please visit the [Project Page](https://github.com/LLaVA-VL/LLaVA-NeXT) or check out the corresponding [research paper](https://arxiv.org/abs/2410.02713).
|
33 |
+
"""
|
34 |
+
description2 ="""- **Architecture**: `LlavaQwenForCausalLM`
|
35 |
+
- **Attention Heads**: 28
|
36 |
+
- **Hidden Layers**: 28
|
37 |
+
- **Hidden Size**: 3584
|
38 |
+
- **Intermediate Size**: 18944
|
39 |
+
- **Max Frames Supported**: 64
|
40 |
+
- **Languages Supported**: English, Chinese
|
41 |
+
- **Image Aspect Ratio**: `anyres_max_9`
|
42 |
+
- **Image Resolution**: Various grid resolutions
|
43 |
+
- **Max Position Embeddings**: 32,768
|
44 |
+
- **Vocab Size**: 152,064
|
45 |
+
- **Model Precision**: bfloat16
|
46 |
+
- **Hardware Used for Training**: 256 * Nvidia Tesla A100 GPUs
|
47 |
+
"""
|
48 |
def load_video(video_path, max_frames_num, fps=1, force_sample=False):
|
49 |
if max_frames_num == 0:
|
50 |
return np.zeros((1, 336, 336, 3))
|
|
|
113 |
return response
|
114 |
|
115 |
with gr.Blocks() as demo:
|
116 |
+
gr.Markdown(title)
|
|
|
|
|
117 |
with gr.Row():
|
118 |
+
with gr.Group():
|
119 |
+
gr.Markdown(description1)
|
120 |
+
with gr.Group():
|
121 |
+
gr.Markdown(description1)
|
122 |
+
with gr.Row():
|
123 |
+
with gr.Column():
|
124 |
+
video_input = gr.Video()
|
125 |
+
question_input = gr.Textbox(label="Question", placeholder="Ask a question about the video...")
|
126 |
+
submit_button = gr.Button("Submit")
|
127 |
output = gr.Textbox(label="Response")
|
128 |
|
129 |
submit_button.click(
|