Spaces:
Runtime error
Runtime error
import spaces | |
import io | |
import os | |
import torch | |
from PIL import Image | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig | |
title = """# Welcome to🌟Tonic's CheXRay⚕⚛ ! | |
You can use this ZeroGPU Space to test out the current model [StanfordAIMI/CheXagent-8b](https://huggingface.co/StanfordAIMI/CheXagent-8b). CheXRay⚕⚛ is fine tuned to analyze chest x-rays with a different and generally better results than other multimodal models. | |
You can also useCheXRay⚕⚛ by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/CheXRay?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
### How To use | |
Upload a medical image and enter a prompt to receive an AI-generated analysis. | |
simply upload an image with the right prompt (coming soon!) and anaylze your Xray ! | |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 | |
""" | |
device = "cuda" | |
dtype = torch.float16 | |
example_images = ["00000174_003.png", "00006596_000.png", "00006663_000.png", | |
"00012976_002.png", "00018401_000.png", "00019799_000.png"] | |
processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-8b", trust_remote_code=True) | |
generation_config = GenerationConfig.from_pretrained("StanfordAIMI/CheXagent-8b") | |
# model = AutoModelForCausalLM.from_pretrained("StanfordAIMI/CheXagent-8b", torch_dtype=dtype, trust_remote_code=True) | |
def generate(image, prompt): | |
model = AutoModelForCausalLM.from_pretrained("StanfordAIMI/CheXagent-8b", torch_dtype=dtype, trust_remote_code=True).to(device) | |
if hasattr(image, "read"): | |
image = Image.open(io.BytesIO(image.read())).convert("RGB") | |
else: | |
image = image | |
images = [image] | |
inputs = processor(images=images, text=f" USER: <s>{prompt} ASSISTANT: <s>", return_tensors="pt").to(device=device, dtype=dtype) | |
output = model.generate(**inputs, generation_config=generation_config)[0] | |
response = processor.tokenizer.decode(output, skip_special_tokens=True) | |
return response | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
with gr.Accordion("Custom Prompt Analysis", open=False): | |
with gr.Row(): | |
image_input_custom = gr.Image(type="pil") | |
prompt_input_custom = gr.Textbox(label="Enter your custom prompt") | |
generate_button_custom = gr.Button("Generate") | |
output_text_custom = gr.Textbox(label="Response") | |
def custom_generate(image, prompt): | |
if isinstance(image, str) and os.path.exists(image): | |
with open(image, 'rb') as file: | |
return generate(file, prompt) | |
else: | |
return generate(image, prompt) | |
generate_button_custom.click(fn=custom_generate, inputs=[image_input_custom, prompt_input_custom], outputs=output_text_custom) | |
custom_prompt_examples = [ | |
[os.path.join(os.path.dirname(__file__), img), "You are an expert X-Ray Analyst, describe this chest x-ray in detail focussing on the lung condition:"] | |
for img in example_images | |
] | |
# example_prompt = "65 y/m Chronic cough and weight loss x 6 months. Chest X-rays normal. Consulted multiple pulmonologists with not much benefit. One wise pulmonologist thinks of GERD and sends him to the Gastro department. Can you name the classical finding here?" | |
# example_image_path = os.path.join(os.path.dirname(__file__), "hegde.jpg") | |
with gr.Accordion("Examples", open=False): | |
gr.Examples( | |
examples=custom_prompt_examples, | |
inputs=[image_input_custom, prompt_input_custom], | |
outputs=[output_text_custom], | |
fn=custom_generate, | |
cache_examples=True | |
) | |
with gr.Accordion("Anatomical Feature Analysis", open=False): | |
anatomies = [ | |
"Airway", "Breathing", "Cardiac", "Diaphragm", | |
"Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, and pacemakers)" | |
] | |
with gr.Row(): | |
image_input_feature = gr.Image(type="pil") | |
prompt_select = gr.Dropdown(label="Select an anatomical feature", choices=anatomies) | |
generate_button_feature = gr.Button("Analyze Feature") | |
output_text_feature = gr.Textbox(label="Response") | |
generate_button_feature.click(fn=lambda image, feature: generate(image, f'Describe "{feature}"'), inputs=[image_input_feature, prompt_select], outputs=output_text_feature) | |
anatomical_feature_examples = [ | |
[os.path.join(os.path.dirname(__file__), img), "Airway"] | |
for img in example_images | |
] | |
with gr.Accordion("Examples", open=False): | |
gr.Examples( | |
examples=anatomical_feature_examples, | |
inputs=[image_input_feature, prompt_select], | |
outputs=[output_text_feature], | |
fn=lambda image, feature: generate(image, f'Describe "{feature}"'), | |
cache_examples=True | |
) | |
with gr.Accordion("Common Abnormalities Analysis", open=False): | |
common_abnormalities = ["Lung Nodule", "Pleural Effusion", "Pneumonia"] | |
with gr.Row(): | |
image_input_abnormality = gr.Image(type="pil") | |
abnormality_select = gr.Dropdown(label="Select a common abnormality", choices=common_abnormalities) | |
generate_button_abnormality = gr.Button("Analyze Abnormality") | |
output_text_abnormality = gr.Textbox(label="Response") | |
generate_button_abnormality.click(fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), inputs=[image_input_abnormality, abnormality_select], outputs=output_text_abnormality) | |
common_abnormalities_examples = [ | |
[os.path.join(os.path.dirname(__file__), img), "Lung Nodule"] | |
for img in example_images | |
] | |
with gr.Accordion("Examples", open=False): | |
gr.Examples( | |
examples=common_abnormalities_examples, | |
inputs=[image_input_abnormality, abnormality_select], | |
outputs=[output_text_abnormality], | |
fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), | |
cache_examples=True | |
) | |
demo.launch() |