Spaces:
Runtime error
Runtime error
| import spaces | |
| import io | |
| import os | |
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig | |
| title = """# Welcome to🌟Tonic's CheXRay⚕⚛ ! | |
| You can use this ZeroGPU Space to test out the current model [StanfordAIMI/CheXagent-8b](https://huggingface.co/StanfordAIMI/CheXagent-8b). CheXRay⚕⚛ is fine tuned to analyze chest x-rays with a different and generally better results than other multimodal models. | |
| You can also useCheXRay⚕⚛ by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/CheXRay?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
| ### How To use | |
| Upload a medical image and enter a prompt to receive an AI-generated analysis. | |
| simply upload an image with the right prompt (coming soon!) and anaylze your Xray ! | |
| Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 | |
| """ | |
| device = "cuda" | |
| dtype = torch.float16 | |
| processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-8b", trust_remote_code=True) | |
| generation_config = GenerationConfig.from_pretrained("StanfordAIMI/CheXagent-8b") | |
| model = AutoModelForCausalLM.from_pretrained("StanfordAIMI/CheXagent-8b", torch_dtype=dtype, trust_remote_code=True) | |
| def generate(image, prompt): | |
| if hasattr(image_input, "read"): | |
| image = Image.open(io.BytesIO(image_input.read())).convert("RGB") | |
| else: | |
| image = image | |
| images = [image] | |
| inputs = processor(images=images, text=f" USER: <s>{prompt} ASSISTANT: <s>", return_tensors="pt").to(device=device, dtype=dtype) | |
| output = model.generate(**inputs, generation_config=generation_config)[0] | |
| response = processor.tokenizer.decode(output, skip_special_tokens=True) | |
| return response | |
| with gr.Blocks() as demo: | |
| gr.Markdown(title) | |
| with gr.Accordion("Custom Prompt Analysis"): | |
| with gr.Row(): | |
| image_input_custom = gr.Image(type="pil") | |
| prompt_input_custom = gr.Textbox(label="Enter your custom prompt") | |
| generate_button_custom = gr.Button("Generate") | |
| output_text_custom = gr.Textbox(label="Response") | |
| def custom_generate(image, prompt): | |
| if isinstance(image, str) and os.path.exists(image): | |
| with open(image, 'rb') as file: | |
| return generate(file, prompt) | |
| else: | |
| return generate(image, prompt) | |
| generate_button_custom.click(fn=custom_generate, inputs=[image_input_custom, prompt_input_custom], outputs=output_text_custom) | |
| example_prompt = "65 y/m Chronic cough and weight loss x 6 months. Chest X-rays normal. Consulted multiple pulmonologists with not much benefit. One wise pulmonologist thinks of GERD and sends him to the Gastro department. Can you name the classical finding here?" | |
| example_image_path = os.path.join(os.path.dirname(__file__), "hegde.jpg") | |
| gr.Examples( | |
| examples=[[example_image_path, example_prompt]], | |
| inputs=[image_input_custom, prompt_input_custom], | |
| outputs=[output_text_custom], | |
| fn=custom_generate, | |
| cache_examples=True | |
| ) | |
| with gr.Accordion("Anatomical Feature Analysis"): | |
| anatomies = [ | |
| "Airway", "Breathing", "Cardiac", "Diaphragm", | |
| "Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, and pacemakers)" | |
| ] | |
| with gr.Row(): | |
| image_input_feature = gr.Image(type="pil") | |
| prompt_select = gr.Dropdown(label="Select an anatomical feature", choices=anatomies) | |
| generate_button_feature = gr.Button("Analyze Feature") | |
| output_text_feature = gr.Textbox(label="Response") | |
| generate_button_feature.click(fn=lambda image, feature: generate(image, f'Describe "{feature}"'), inputs=[image_input_feature, prompt_select], outputs=output_text_feature) | |
| with gr.Accordion("Common Abnormalities Analysis"): | |
| common_abnormalities = ["Lung Nodule", "Pleural Effusion", "Pneumonia"] | |
| with gr.Row(): | |
| image_input_abnormality = gr.Image(type="pil") | |
| abnormality_select = gr.Dropdown(label="Select a common abnormality", choices=common_abnormalities) | |
| generate_button_abnormality = gr.Button("Analyze Abnormality") | |
| output_text_abnormality = gr.Textbox(label="Response") | |
| generate_button_abnormality.click(fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), inputs=[image_input_abnormality, abnormality_select], outputs=output_text_abnormality) | |
| demo.launch() |