Tonic commited on
Commit
e042085
1 Parent(s): 7b924b8

refactor global vars

Browse files
Files changed (3) hide show
  1. .gitignore +1 -0
  2. app.py +12 -91
  3. globalvars.py +86 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .env
app.py CHANGED
@@ -13,93 +13,9 @@ import os
13
  import json
14
  import numpy as np
15
 
16
- """
17
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
18
- """
19
-
20
- ## Global Variables
21
-
22
- title = """
23
- # 👋🏻Welcome to 🙋🏻‍♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
24
-
25
- description = """
26
- You can use this Space to test out the current model [nvidia/NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1). 🐣a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark (MTEB benchmark)(as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks.
27
- You can also use 📽️Nvidia 🛌🏻Embed V-1 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/NV-Embed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
28
- Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [MultiTonic](https://github.com/MultiTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
29
- """
30
-
31
- tasks = {
32
- 'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
33
- 'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
34
- 'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
35
- 'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
36
- 'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
37
- 'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
38
- 'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
39
- 'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
40
- 'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
41
- 'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
42
- }
43
-
44
- intention_prompt= """
45
- "type": "object",
46
- "properties": {
47
- "ClimateFEVER": {
48
- "type": "boolean",
49
- "description" : "select this for climate science related text"
50
- },
51
- "DBPedia": {
52
- "type": "boolean",
53
- "description" : "select this for encyclopedic related knowledge"
54
- },
55
- "FEVER": {
56
- "type": "boolean",
57
- "description": "select this to verify a claim or embed a claim"
58
- },
59
- "FiQA2018": {
60
- "type": "boolean",
61
- "description" : "select this for financial questions or topics"
62
- },
63
- "HotpotQA": {
64
- "type": "boolean",
65
- "description" : "select this for a multi-hop question or for texts that provide multihop claims"
66
- },
67
- "MSMARCO": {
68
- "type": "boolean",
69
- "description": "Given a web search query, retrieve relevant passages that answer the query"
70
- },
71
- "NFCorpus": {
72
- "type": "boolean",
73
- "description" : "Given a question, retrieve relevant documents that best answer the question"
74
- },
75
- "NQ": {
76
- "type": "boolean",
77
- "description" : "Given a question, retrieve Wikipedia passages that answer the question"
78
- },
79
- "QuoraRetrieval": {
80
- "type": "boolean",
81
- "description": "Given a question, retrieve questions that are semantically equivalent to the given question"
82
- },
83
- "SCIDOCS": {
84
- "type": "boolean",
85
- "description": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper"
86
- }
87
- },
88
- "required": [
89
- "ClimateFEVER",
90
- "DBPedia",
91
- "FEVER",
92
- "FiQA2018",
93
- "HotpotQA",
94
- "MSMARCO",
95
- "NFCorpus",
96
- "NQ",
97
- "QuoraRetrieval",
98
- "SCIDOCS",
99
- ]
100
- produce a complete json schema."
101
-
102
- you will recieve a text , classify the text according to the schema above. ONLY PROVIDE THE FINAL JSON , DO NOT PRODUCE ANY ADDITION INSTRUCTION :"""
103
 
104
  ## add chroma vector store
105
 
@@ -112,10 +28,15 @@ model = AutoModel.from_pretrained('nvidia/NV-Embed-v1', trust_remote_code=True).
112
 
113
  ## Make intention Mapper
114
 
115
-
116
-
117
- ## Change to Yi API Client
118
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
119
 
120
  def respond(
121
  message,
 
13
  import json
14
  import numpy as np
15
 
16
+ import openai
17
+ from openai import OpenAI
18
+ from globalvars import API_BASE, API_KEY, intention_prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ## add chroma vector store
21
 
 
28
 
29
  ## Make intention Mapper
30
 
31
+ intention_client = OpenAI(
32
+ api_key=API_KEY,
33
+ base_url=API_BASE
34
+ )
35
+ intention_completion = intention_client.chat.completions.create(
36
+ model="yi-large",
37
+ messages=[{"role": "system", "content": intention_prompt},{"role": "user", "content": inputext}]
38
+ )
39
+ # print(completion)
40
 
41
  def respond(
42
  message,
globalvars.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Global Variables
2
+
3
+ API_BASE = "https://api.01.ai/v1"
4
+ API_KEY = "your key"
5
+
6
+ title = """
7
+ # 👋🏻Welcome to 🙋🏻‍♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
8
+
9
+ description = """
10
+ You can use this Space to test out the current model [nvidia/NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1). 🐣a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark (MTEB benchmark)(as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks.
11
+ You can also use 📽️Nvidia 🛌🏻Embed V-1 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/NV-Embed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
12
+ Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [MultiTonic](https://github.com/MultiTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
13
+ """
14
+
15
+ tasks = {
16
+ 'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
17
+ 'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
18
+ 'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
19
+ 'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
20
+ 'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
21
+ 'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
22
+ 'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
23
+ 'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
24
+ 'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
25
+ 'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
26
+ }
27
+
28
+ intention_prompt= """
29
+ "type": "object",
30
+ "properties": {
31
+ "ClimateFEVER": {
32
+ "type": "boolean",
33
+ "description" : "select this for climate science related text"
34
+ },
35
+ "DBPedia": {
36
+ "type": "boolean",
37
+ "description" : "select this for encyclopedic related knowledge"
38
+ },
39
+ "FEVER": {
40
+ "type": "boolean",
41
+ "description": "select this to verify a claim or embed a claim"
42
+ },
43
+ "FiQA2018": {
44
+ "type": "boolean",
45
+ "description" : "select this for financial questions or topics"
46
+ },
47
+ "HotpotQA": {
48
+ "type": "boolean",
49
+ "description" : "select this for a multi-hop question or for texts that provide multihop claims"
50
+ },
51
+ "MSMARCO": {
52
+ "type": "boolean",
53
+ "description": "Given a web search query, retrieve relevant passages that answer the query"
54
+ },
55
+ "NFCorpus": {
56
+ "type": "boolean",
57
+ "description" : "Given a question, retrieve relevant documents that best answer the question"
58
+ },
59
+ "NQ": {
60
+ "type": "boolean",
61
+ "description" : "Given a question, retrieve Wikipedia passages that answer the question"
62
+ },
63
+ "QuoraRetrieval": {
64
+ "type": "boolean",
65
+ "description": "Given a question, retrieve questions that are semantically equivalent to the given question"
66
+ },
67
+ "SCIDOCS": {
68
+ "type": "boolean",
69
+ "description": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper"
70
+ }
71
+ },
72
+ "required": [
73
+ "ClimateFEVER",
74
+ "DBPedia",
75
+ "FEVER",
76
+ "FiQA2018",
77
+ "HotpotQA",
78
+ "MSMARCO",
79
+ "NFCorpus",
80
+ "NQ",
81
+ "QuoraRetrieval",
82
+ "SCIDOCS",
83
+ ]
84
+ produce a complete json schema."
85
+
86
+ you will recieve a text , classify the text according to the schema above. ONLY PROVIDE THE FINAL JSON , DO NOT PRODUCE ANY ADDITION INSTRUCTION :"""