Spaces:
Build error
Build error
improve retrieval and application logic
Browse files- app.py +71 -68
- globalvars.py +4 -0
app.py
CHANGED
@@ -14,7 +14,7 @@ import gradio as gr
|
|
14 |
from huggingface_hub import InferenceClient
|
15 |
import openai
|
16 |
from openai import OpenAI
|
17 |
-
from globalvars import API_BASE, intention_prompt, tasks
|
18 |
from dotenv import load_dotenv
|
19 |
import re
|
20 |
from utils import load_env_variables
|
@@ -30,26 +30,17 @@ os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
|
30 |
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
|
33 |
-
### Utils
|
34 |
-
|
35 |
hf_token, yi_token = load_env_variables()
|
36 |
|
37 |
def clear_cuda_cache():
|
38 |
torch.cuda.empty_cache()
|
39 |
|
40 |
-
|
41 |
-
## 01ai Yi-large Clience
|
42 |
-
|
43 |
client = OpenAI(
|
44 |
api_key=yi_token,
|
45 |
base_url=API_BASE
|
46 |
)
|
47 |
|
48 |
|
49 |
-
## use instruct embeddings
|
50 |
-
|
51 |
-
# Load the tokenizer and model
|
52 |
-
|
53 |
class EmbeddingGenerator:
|
54 |
def __init__(self, model_name: str, token: str, intention_client):
|
55 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -108,7 +99,6 @@ class MyEmbeddingFunction(EmbeddingFunction):
|
|
108 |
embeddings = [item for sublist in embeddings for item in sublist]
|
109 |
return embeddings
|
110 |
|
111 |
-
## add chroma vector store
|
112 |
class DocumentLoader:
|
113 |
def __init__(self, file_path: str, mode: str = "elements"):
|
114 |
self.file_path = file_path
|
@@ -136,60 +126,73 @@ class ChromaManager:
|
|
136 |
return result_docs
|
137 |
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
for message in
|
163 |
-
messages,
|
164 |
-
max_tokens=max_tokens,
|
165 |
-
stream=True,
|
166 |
-
temperature=temperature,
|
167 |
-
top_p=top_p,
|
168 |
-
):
|
169 |
-
token = message.choices[0].delta.content
|
170 |
-
|
171 |
-
response
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
)
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from huggingface_hub import InferenceClient
|
15 |
import openai
|
16 |
from openai import OpenAI
|
17 |
+
from globalvars import API_BASE, intention_prompt, tasks , system_message, model_name
|
18 |
from dotenv import load_dotenv
|
19 |
import re
|
20 |
from utils import load_env_variables
|
|
|
30 |
os.environ['CUDA_CACHE_DISABLE'] = '1'
|
31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
|
|
|
|
|
33 |
hf_token, yi_token = load_env_variables()
|
34 |
|
35 |
def clear_cuda_cache():
|
36 |
torch.cuda.empty_cache()
|
37 |
|
|
|
|
|
|
|
38 |
client = OpenAI(
|
39 |
api_key=yi_token,
|
40 |
base_url=API_BASE
|
41 |
)
|
42 |
|
43 |
|
|
|
|
|
|
|
|
|
44 |
class EmbeddingGenerator:
|
45 |
def __init__(self, model_name: str, token: str, intention_client):
|
46 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
99 |
embeddings = [item for sublist in embeddings for item in sublist]
|
100 |
return embeddings
|
101 |
|
|
|
102 |
class DocumentLoader:
|
103 |
def __init__(self, file_path: str, mode: str = "elements"):
|
104 |
self.file_path = file_path
|
|
|
126 |
return result_docs
|
127 |
|
128 |
|
129 |
+
# Initialize clients
|
130 |
+
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
131 |
+
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
|
132 |
+
embedding_function = MyEmbeddingFunction(embedding_generator=embedding_generator)
|
133 |
+
chroma_manager = ChromaManager(embedding_function=embedding_function)
|
134 |
+
|
135 |
+
def respond(
|
136 |
+
message,
|
137 |
+
history: list[tuple[str, str]],
|
138 |
+
system_message,
|
139 |
+
max_tokens,
|
140 |
+
temperature,
|
141 |
+
top_p,
|
142 |
+
):
|
143 |
+
retrieved_text = query_documents(message)
|
144 |
+
messages = [{"role": "system", "content": system_message}]
|
145 |
+
for val in history:
|
146 |
+
if val[0]:
|
147 |
+
messages.append({"role": "user", "content": val[0]})
|
148 |
+
if val[1]:
|
149 |
+
messages.append({"role": "assistant", "content": val[1]})
|
150 |
+
messages.append({"role": "user", "content": f"{retrieved_text}\n\n{message}"})
|
151 |
+
response = ""
|
152 |
+
for message in intention_client.chat_completion(
|
153 |
+
messages,
|
154 |
+
max_tokens=max_tokens,
|
155 |
+
stream=True,
|
156 |
+
temperature=temperature,
|
157 |
+
top_p=top_p,
|
158 |
+
):
|
159 |
+
token = message.choices[0].delta.content
|
160 |
+
response += token
|
161 |
+
yield response
|
162 |
+
|
163 |
+
def upload_documents(files):
|
164 |
+
for file in files:
|
165 |
+
loader = DocumentLoader(file.name)
|
166 |
+
documents = loader.load_documents()
|
167 |
+
chroma_manager.add_documents(documents)
|
168 |
+
return "Documents uploaded and processed successfully!"
|
169 |
+
|
170 |
+
def query_documents(query):
|
171 |
+
results = chroma_manager.query(query)
|
172 |
+
return "\n\n".join([result.content for result in results])
|
173 |
+
|
174 |
+
with gr.Blocks() as demo:
|
175 |
+
with gr.Tab("Upload Documents"):
|
176 |
+
with gr.Row():
|
177 |
+
document_upload = gr.File(file_count="multiple", file_types=["document"])
|
178 |
+
upload_button = gr.Button("Upload and Process")
|
179 |
+
upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())
|
180 |
+
|
181 |
+
with gr.Tab("Ask Questions"):
|
182 |
+
with gr.Row():
|
183 |
+
chat_interface = gr.ChatInterface(
|
184 |
+
respond,
|
185 |
+
additional_inputs=[
|
186 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
187 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
188 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
189 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
190 |
+
],
|
191 |
+
)
|
192 |
+
query_input = gr.Textbox(label="Query")
|
193 |
+
query_button = gr.Button("Query")
|
194 |
+
query_output = gr.Textbox()
|
195 |
+
query_button.click(query_documents, inputs=query_input, outputs=query_output)
|
196 |
+
|
197 |
+
if __name__ == "__main__":
|
198 |
+
demo.launch()
|
globalvars.py
CHANGED
@@ -3,6 +3,8 @@
|
|
3 |
API_BASE = "https://api.01.ai/v1"
|
4 |
API_KEY = "your key"
|
5 |
|
|
|
|
|
6 |
title = """
|
7 |
# 👋🏻Welcome to 🙋🏻♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
|
8 |
|
@@ -84,3 +86,5 @@ intention_prompt= """
|
|
84 |
produce a complete json schema."
|
85 |
|
86 |
you will recieve a text , classify the text according to the schema above. ONLY PROVIDE THE FINAL JSON , DO NOT PRODUCE ANY ADDITION INSTRUCTION :"""
|
|
|
|
|
|
3 |
API_BASE = "https://api.01.ai/v1"
|
4 |
API_KEY = "your key"
|
5 |
|
6 |
+
model_name = 'nvidia/NV-Embed-v1'
|
7 |
+
|
8 |
title = """
|
9 |
# 👋🏻Welcome to 🙋🏻♂️Tonic's 📽️Nvidia 🛌🏻Embed V-1 !"""
|
10 |
|
|
|
86 |
produce a complete json schema."
|
87 |
|
88 |
you will recieve a text , classify the text according to the schema above. ONLY PROVIDE THE FINAL JSON , DO NOT PRODUCE ANY ADDITION INSTRUCTION :"""
|
89 |
+
|
90 |
+
system_message = """ You are a helpful assistant named YiTonic . answer the question provided based on the context above. Produce a complete answer:"""
|