TongkunGuan commited on
Commit
9767857
·
verified ·
1 Parent(s): 3c0a9da

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +13 -13
utils.py CHANGED
@@ -160,13 +160,13 @@ def generate_similiarity_map(images, attn_map, all_bpe_strings, vis_list, target
160
  attn_norm = get_similarity_map(attn_map.unsqueeze(0), (target_height, target_width), min_max=True, threshold=0.15)
161
  print("attn_norm ",attn_norm.shape) # 有问题attn_norm torch.Size([1, 4, 448, 448])
162
  print('all_bpe_strings:{:}'.format(all_bpe_strings))
163
- indexes_without_space = torch.tensor([index for index, string in enumerate(all_bpe_strings) if ' ' is not string])
164
 
165
  # Draw similarity map
166
  # print(images_vis.shape)
167
  images_vis = (images_vis.permute(1,2,0).cpu().numpy() * 125).astype('uint8')
168
  for b in range(attn_norm.shape[0]):
169
- for n in range(attn_norm.shape[1]-1):
170
  vis = (attn_norm[b, n, :, :].float().detach().cpu().numpy() * 255).astype('uint8')
171
  vis = cv2.applyColorMap(vis, cv2.COLORMAP_JET)
172
  print("images_vis",images_vis.shape)
@@ -176,17 +176,17 @@ def generate_similiarity_map(images, attn_map, all_bpe_strings, vis_list, target
176
  vis = cv2.resize(vis, src_iamge_size)
177
  vis_list.append(vis) # Add each visualization to the list
178
 
179
- without_space_norm = attn_norm[b, indexes_without_space, :, :].max(0)[0]
180
- space_norm = attn_norm[b, -1, :, :]
181
- all_attn_norm = without_space_norm - space_norm
182
- print(f'min:{all_attn_norm.min()};max:{all_attn_norm.max()}')
183
- all_attn_norm = (all_attn_norm - all_attn_norm.min()) / (all_attn_norm.max() - all_attn_norm.min())
184
- all_attn_norm = (all_attn_norm.float().detach().cpu().numpy() * 255).astype('uint8')
185
- vis = cv2.applyColorMap(all_attn_norm, cv2.COLORMAP_JET)
186
- vis = images_vis * 0.5 + vis * 0.5
187
- vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
188
- vis = cv2.resize(vis, src_iamge_size)
189
- vis_list.append(vis) # Add each visualization to the list
190
 
191
  return vis_list
192
 
 
160
  attn_norm = get_similarity_map(attn_map.unsqueeze(0), (target_height, target_width), min_max=True, threshold=0.15)
161
  print("attn_norm ",attn_norm.shape) # 有问题attn_norm torch.Size([1, 4, 448, 448])
162
  print('all_bpe_strings:{:}'.format(all_bpe_strings))
163
+ # indexes_without_space = torch.tensor([index for index, string in enumerate(all_bpe_strings) if ' ' is not string])
164
 
165
  # Draw similarity map
166
  # print(images_vis.shape)
167
  images_vis = (images_vis.permute(1,2,0).cpu().numpy() * 125).astype('uint8')
168
  for b in range(attn_norm.shape[0]):
169
+ for n in range(attn_norm.shape[1]):
170
  vis = (attn_norm[b, n, :, :].float().detach().cpu().numpy() * 255).astype('uint8')
171
  vis = cv2.applyColorMap(vis, cv2.COLORMAP_JET)
172
  print("images_vis",images_vis.shape)
 
176
  vis = cv2.resize(vis, src_iamge_size)
177
  vis_list.append(vis) # Add each visualization to the list
178
 
179
+ # without_space_norm = attn_norm[b, indexes_without_space, :, :].max(0)[0]
180
+ # space_norm = attn_norm[b, -1, :, :]
181
+ # all_attn_norm = without_space_norm - space_norm
182
+ # print(f'min:{all_attn_norm.min()};max:{all_attn_norm.max()}')
183
+ # all_attn_norm = (all_attn_norm - all_attn_norm.min()) / (all_attn_norm.max() - all_attn_norm.min())
184
+ # all_attn_norm = (all_attn_norm.float().detach().cpu().numpy() * 255).astype('uint8')
185
+ # vis = cv2.applyColorMap(all_attn_norm, cv2.COLORMAP_JET)
186
+ # vis = images_vis * 0.5 + vis * 0.5
187
+ # vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
188
+ # vis = cv2.resize(vis, src_iamge_size)
189
+ # vis_list.append(vis) # Add each visualization to the list
190
 
191
  return vis_list
192