Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- .gitattributes +1 -0
- test.pdf +3 -0
- train.py +137 -0
.gitattributes
CHANGED
@@ -38,3 +38,4 @@ vol2.pdf filter=lfs diff=lfs merge=lfs -text
|
|
38 |
vol3.pdf filter=lfs diff=lfs merge=lfs -text
|
39 |
vol4.pdf filter=lfs diff=lfs merge=lfs -text
|
40 |
vol5.pdf filter=lfs diff=lfs merge=lfs -text
|
|
|
|
38 |
vol3.pdf filter=lfs diff=lfs merge=lfs -text
|
39 |
vol4.pdf filter=lfs diff=lfs merge=lfs -text
|
40 |
vol5.pdf filter=lfs diff=lfs merge=lfs -text
|
41 |
+
test.pdf filter=lfs diff=lfs merge=lfs -text
|
test.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecd8e1207b3be0e246d40823509a2c774594319601bd1c28171722f735058a2e
|
3 |
+
size 381011
|
train.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz # PyMuPDF
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import torch
|
4 |
+
from milvus import Milvus, DataType
|
5 |
+
import os
|
6 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain.schema import StrOutputParser
|
9 |
+
from langchain.schema.runnable import RunnablePassthrough
|
10 |
+
from langchain.schema import BaseLoader, LCDocument
|
11 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
12 |
+
from docling.document_converter import DocumentConverter
|
13 |
+
import gradio as gr
|
14 |
+
from typing import Iterator
|
15 |
+
|
16 |
+
# Initialize Milvus
|
17 |
+
milvus = Milvus(host='localhost', port='19530')
|
18 |
+
|
19 |
+
# Load BAAI embedding model
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-base-en-v1.5")
|
21 |
+
model = AutoModel.from_pretrained("BAAI/bge-base-en-v1.5")
|
22 |
+
|
23 |
+
# Docling PDF Loader
|
24 |
+
class DoclingPDFLoader(BaseLoader):
|
25 |
+
def __init__(self, file_path: str | list[str]) -> None:
|
26 |
+
self._file_paths = file_path if isinstance(file_path, list) else [file_path]
|
27 |
+
self._converter = DocumentConverter()
|
28 |
+
|
29 |
+
def lazy_load(self) -> Iterator[LCDocument]:
|
30 |
+
for source in self._file_paths:
|
31 |
+
dl_doc = self._converter.convert(source).document
|
32 |
+
text = dl_doc.export_to_markdown()
|
33 |
+
yield LCDocument(page_content=text)
|
34 |
+
|
35 |
+
def load(self) -> list[LCDocument]:
|
36 |
+
return list(self.lazy_load())
|
37 |
+
|
38 |
+
# Function to extract and split text from PDF
|
39 |
+
def extract_text_from_pdf(pdf_path):
|
40 |
+
loader = DoclingPDFLoader(file_path=pdf_path)
|
41 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
42 |
+
chunk_size=1000,
|
43 |
+
chunk_overlap=200,
|
44 |
+
)
|
45 |
+
docs = loader.load()
|
46 |
+
splits = text_splitter.split_documents(docs)
|
47 |
+
return " ".join([doc.page_content for doc in splits])
|
48 |
+
|
49 |
+
# Set up LLM
|
50 |
+
HF_API_KEY = os.environ.get("HF_API_KEY")
|
51 |
+
HF_LLM_MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.3"
|
52 |
+
llm = HuggingFaceEndpoint(
|
53 |
+
repo_id=HF_LLM_MODEL_ID,
|
54 |
+
huggingfacehub_api_token=HF_API_KEY,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Function to extract text from PDF
|
58 |
+
def extract_text_from_pdf(pdf_path):
|
59 |
+
doc = fitz.open(pdf_path)
|
60 |
+
text = ""
|
61 |
+
for page in doc:
|
62 |
+
text += page.get_text()
|
63 |
+
return text
|
64 |
+
|
65 |
+
# Function to generate embeddings
|
66 |
+
def generate_embeddings(text):
|
67 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = model(**inputs)
|
70 |
+
return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
71 |
+
|
72 |
+
# Function to insert embeddings into Milvus
|
73 |
+
def insert_into_milvus(embeddings):
|
74 |
+
collection_name = "pdf_embeddings"
|
75 |
+
if not milvus.has_collection(collection_name):
|
76 |
+
milvus.create_collection({
|
77 |
+
"collection_name": collection_name,
|
78 |
+
"dimension": embeddings.shape[0],
|
79 |
+
"index_file_size": 1024,
|
80 |
+
"metric_type": "L2"
|
81 |
+
})
|
82 |
+
milvus.insert(collection_name, [embeddings])
|
83 |
+
|
84 |
+
# Function to query Milvus
|
85 |
+
def query_milvus(query_embedding, top_k=5):
|
86 |
+
collection_name = "pdf_embeddings"
|
87 |
+
search_params = {"metric_type": "L2", "params": {"nprobe": 16}}
|
88 |
+
results = milvus.search(collection_name, [query_embedding], top_k, search_params)
|
89 |
+
return results
|
90 |
+
|
91 |
+
# Function to generate response using Llama
|
92 |
+
# Update generate_response function to use the RAG pipeline
|
93 |
+
def generate_response(query, context):
|
94 |
+
prompt = PromptTemplate.from_template(
|
95 |
+
"Context information is below.\n---------------------\n{context}\n---------------------\nGiven the context information and not prior knowledge, answer the query.\nQuery: {question}\nAnswer:\n"
|
96 |
+
)
|
97 |
+
|
98 |
+
rag_chain = (
|
99 |
+
{"context": context, "question": query}
|
100 |
+
| prompt
|
101 |
+
| llm
|
102 |
+
| StrOutputParser()
|
103 |
+
)
|
104 |
+
|
105 |
+
return rag_chain.invoke(query)
|
106 |
+
|
107 |
+
# Main function
|
108 |
+
def main(pdf_path, query):
|
109 |
+
# Step 1: Extract text from PDF
|
110 |
+
text = extract_text_from_pdf(pdf_path)
|
111 |
+
|
112 |
+
# Step 2: Generate embeddings for the text
|
113 |
+
embeddings = generate_embeddings(text)
|
114 |
+
|
115 |
+
# Step 3: Insert embeddings into Milvus
|
116 |
+
insert_into_milvus(embeddings)
|
117 |
+
|
118 |
+
# Step 4: Generate embeddings for the query
|
119 |
+
query_embedding = generate_embeddings(query)
|
120 |
+
|
121 |
+
# Step 5: Query Milvus for similar embeddings
|
122 |
+
results = query_milvus(query_embedding)
|
123 |
+
|
124 |
+
# Step 6: Generate response using Llama
|
125 |
+
context = " ".join([result for result in results])
|
126 |
+
response = generate_response(query, context)
|
127 |
+
|
128 |
+
print(response)
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
# Initialize Gradio interface
|
132 |
+
def ask_question(question):
|
133 |
+
pdf_path = "test.pdf"
|
134 |
+
main(pdf_path, question)
|
135 |
+
|
136 |
+
iface = gr.Interface(fn=ask_question, inputs="text", outputs="text")
|
137 |
+
iface.launch()
|