JHong commited on
Commit
a45bc4e
1 Parent(s): 4ef772d

Add application file

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +31 -0
  2. README.md +6 -10
  3. app.py +615 -0
  4. data/prompts/complex_reasoning/000_caps.txt +18 -0
  5. data/prompts/complex_reasoning/000_conv.txt +5 -0
  6. data/prompts/complex_reasoning/001_caps.txt +18 -0
  7. data/prompts/complex_reasoning/001_conv.txt +5 -0
  8. data/prompts/complex_reasoning/002_caps.txt +7 -0
  9. data/prompts/complex_reasoning/002_conv.txt +5 -0
  10. data/prompts/complex_reasoning/system_message.txt +10 -0
  11. data/prompts/conversation/000_caps.txt +5 -0
  12. data/prompts/conversation/000_conv.txt +29 -0
  13. data/prompts/conversation/001_caps.txt +5 -0
  14. data/prompts/conversation/001_conv.txt +37 -0
  15. data/prompts/conversation/system_message.txt +12 -0
  16. data/prompts/detail_description/000_caps.txt +18 -0
  17. data/prompts/detail_description/000_conv.txt +3 -0
  18. data/prompts/detail_description/001_caps.txt +18 -0
  19. data/prompts/detail_description/001_conv.txt +5 -0
  20. data/prompts/detail_description/002_caps.txt +15 -0
  21. data/prompts/detail_description/002_conv.txt +3 -0
  22. data/prompts/detail_description/system_message.txt +7 -0
  23. llava/__init__.py +1 -0
  24. llava/constants.py +12 -0
  25. llava/conversation.py +381 -0
  26. llava/eval/eval_gpt_review.py +113 -0
  27. llava/eval/eval_gpt_review_bench.py +121 -0
  28. llava/eval/eval_gpt_review_visual.py +118 -0
  29. llava/eval/eval_pope.py +81 -0
  30. llava/eval/eval_science_qa.py +99 -0
  31. llava/eval/eval_science_qa_gpt4.py +104 -0
  32. llava/eval/eval_science_qa_gpt4_requery.py +149 -0
  33. llava/eval/eval_textvqa.py +65 -0
  34. llava/eval/generate_webpage_data_from_table.py +111 -0
  35. llava/eval/m4c_evaluator.py +334 -0
  36. llava/eval/model_captioning.py +145 -0
  37. llava/eval/model_qa.py +85 -0
  38. llava/eval/model_vqa.py +112 -0
  39. llava/eval/model_vqa_loader.py +145 -0
  40. llava/eval/model_vqa_mmbench.py +170 -0
  41. llava/eval/model_vqa_qbench.py +122 -0
  42. llava/eval/model_vqa_science.py +141 -0
  43. llava/eval/qa_baseline_gpt35.py +74 -0
  44. llava/eval/run_llava.py +97 -0
  45. llava/eval/summarize_gpt_review.py +50 -0
  46. llava/eval/webpage/figures/alpaca.png +0 -0
  47. llava/eval/webpage/figures/bard.jpg +0 -0
  48. llava/eval/webpage/figures/chatgpt.svg +1 -0
  49. llava/eval/webpage/figures/llama.jpg +0 -0
  50. llava/eval/webpage/figures/swords_FILL0_wght300_GRAD0_opsz48.svg +1 -0
.gitignore ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__
3
+ *.pyc
4
+ *.egg-info
5
+ dist
6
+
7
+ # Log
8
+ *.log
9
+ *.log.*
10
+ *.json
11
+ *.jsonl
12
+
13
+ # Data
14
+ !**/alpaca-data-conversation.json
15
+
16
+ # Editor
17
+ .idea
18
+ *.swp
19
+
20
+ # Other
21
+ .DS_Store
22
+ wandb
23
+ output
24
+
25
+ checkpoints
26
+ ckpts*
27
+
28
+ .ipynb_checkpoints
29
+ *.ipynb
30
+
31
+ *.log
README.md CHANGED
@@ -1,13 +1,9 @@
1
  ---
2
- title: CXR LLaVA
3
- emoji: 👀
4
- colorFrom: indigo
5
  colorTo: gray
6
  sdk: gradio
7
- sdk_version: 4.7.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: LLaVA
3
+ emoji: 🔥
4
+ colorFrom: purple
5
  colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 3.36.1
8
+ app_port: 7860
9
+ ---
 
 
 
 
app.py ADDED
@@ -0,0 +1,615 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import datetime
3
+ import hashlib
4
+ import json
5
+ import os
6
+ import subprocess
7
+ import sys
8
+ import time
9
+
10
+ import gradio as gr
11
+ import requests
12
+
13
+ from llava.constants import LOGDIR
14
+ from llava.conversation import SeparatorStyle, conv_templates, default_conversation
15
+ from llava.utils import (
16
+ build_logger,
17
+ moderation_msg,
18
+ server_error_msg,
19
+ violates_moderation,
20
+ )
21
+
22
+ logger = build_logger("gradio_web_server", "gradio_web_server.log")
23
+
24
+ headers = {"User-Agent": "LLaVA Client"}
25
+
26
+ no_change_btn = gr.Button.update()
27
+ enable_btn = gr.Button.update(interactive=True)
28
+ disable_btn = gr.Button.update(interactive=False)
29
+
30
+ priority = {
31
+ "vicuna-13b": "aaaaaaa",
32
+ "koala-13b": "aaaaaab",
33
+ }
34
+
35
+
36
+ def get_conv_log_filename():
37
+ t = datetime.datetime.now()
38
+ name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
39
+ return name
40
+
41
+
42
+ def get_model_list():
43
+ ret = requests.post(args.controller_url + "/refresh_all_workers")
44
+ assert ret.status_code == 200
45
+ ret = requests.post(args.controller_url + "/list_models")
46
+ models = ret.json()["models"]
47
+ models.sort(key=lambda x: priority.get(x, x))
48
+ logger.info(f"Models: {models}")
49
+ return models
50
+
51
+
52
+ get_window_url_params = """
53
+ function() {
54
+ const params = new URLSearchParams(window.location.search);
55
+ url_params = Object.fromEntries(params);
56
+ console.log(url_params);
57
+ return url_params;
58
+ }
59
+ """
60
+
61
+
62
+ def load_demo(url_params, request: gr.Request):
63
+ logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
64
+
65
+ dropdown_update = gr.Dropdown.update(visible=True)
66
+ if "model" in url_params:
67
+ model = url_params["model"]
68
+ if model in models:
69
+ dropdown_update = gr.Dropdown.update(value=model, visible=True)
70
+
71
+ state = default_conversation.copy()
72
+ return state, dropdown_update
73
+
74
+
75
+ def load_demo_refresh_model_list(request: gr.Request):
76
+ logger.info(f"load_demo. ip: {request.client.host}")
77
+ models = get_model_list()
78
+ state = default_conversation.copy()
79
+
80
+ models_downloaded = True if models else False
81
+
82
+ model_dropdown_kwargs = {
83
+ "choices": [],
84
+ "value": "Downloading the models...",
85
+ "interactive": models_downloaded,
86
+ }
87
+
88
+ if models_downloaded:
89
+ model_dropdown_kwargs["choices"] = models
90
+ model_dropdown_kwargs["value"] = models[0]
91
+
92
+ models_dropdown_update = gr.Dropdown.update(**model_dropdown_kwargs)
93
+
94
+ send_button_update = gr.Button.update(
95
+ interactive=models_downloaded,
96
+ )
97
+
98
+ return state, models_dropdown_update, send_button_update
99
+
100
+
101
+ def vote_last_response(state, vote_type, model_selector, request: gr.Request):
102
+ with open(get_conv_log_filename(), "a") as fout:
103
+ data = {
104
+ "tstamp": round(time.time(), 4),
105
+ "type": vote_type,
106
+ "model": model_selector,
107
+ "state": state.dict(),
108
+ "ip": request.client.host,
109
+ }
110
+ fout.write(json.dumps(data) + "\n")
111
+
112
+
113
+ def upvote_last_response(state, model_selector, request: gr.Request):
114
+ logger.info(f"upvote. ip: {request.client.host}")
115
+ vote_last_response(state, "upvote", model_selector, request)
116
+ return ("",) + (disable_btn,) * 3
117
+
118
+
119
+ def downvote_last_response(state, model_selector, request: gr.Request):
120
+ logger.info(f"downvote. ip: {request.client.host}")
121
+ vote_last_response(state, "downvote", model_selector, request)
122
+ return ("",) + (disable_btn,) * 3
123
+
124
+
125
+ def flag_last_response(state, model_selector, request: gr.Request):
126
+ logger.info(f"flag. ip: {request.client.host}")
127
+ vote_last_response(state, "flag", model_selector, request)
128
+ return ("",) + (disable_btn,) * 3
129
+
130
+
131
+ def regenerate(state, image_process_mode, request: gr.Request):
132
+ logger.info(f"regenerate. ip: {request.client.host}")
133
+ state.messages[-1][-1] = None
134
+ prev_human_msg = state.messages[-2]
135
+ if type(prev_human_msg[1]) in (tuple, list):
136
+ prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
137
+ state.skip_next = False
138
+ return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
139
+
140
+
141
+ def clear_history(request: gr.Request):
142
+ logger.info(f"clear_history. ip: {request.client.host}")
143
+ state = default_conversation.copy()
144
+ return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
145
+
146
+
147
+ def add_text(state, text, image, image_process_mode, request: gr.Request):
148
+ logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
149
+ if len(text) <= 0 and image is None:
150
+ state.skip_next = True
151
+ return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
152
+ if args.moderate:
153
+ flagged = violates_moderation(text)
154
+ if flagged:
155
+ state.skip_next = True
156
+ return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
157
+ no_change_btn,
158
+ ) * 5
159
+
160
+ text = text[:1536] # Hard cut-off
161
+ if image is not None:
162
+ text = text[:1200] # Hard cut-off for images
163
+ if "<image>" not in text:
164
+ # text = '<Image><image></Image>' + text
165
+ text = text + "\n<image>"
166
+ text = (text, image, image_process_mode)
167
+ if len(state.get_images(return_pil=True)) > 0:
168
+ state = default_conversation.copy()
169
+ state.append_message(state.roles[0], text)
170
+ state.append_message(state.roles[1], None)
171
+ state.skip_next = False
172
+ return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
173
+
174
+
175
+ def http_bot(
176
+ state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request
177
+ ):
178
+ logger.info(f"http_bot. ip: {request.client.host}")
179
+ start_tstamp = time.time()
180
+ model_name = model_selector
181
+
182
+ if state.skip_next:
183
+ # This generate call is skipped due to invalid inputs
184
+ yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
185
+ return
186
+
187
+ if len(state.messages) == state.offset + 2:
188
+ # First round of conversation
189
+ if "llava" in model_name.lower():
190
+ if "llama-2" in model_name.lower():
191
+ template_name = "llava_llama_2"
192
+ elif "v1" in model_name.lower():
193
+ if "mmtag" in model_name.lower():
194
+ template_name = "v1_mmtag"
195
+ elif (
196
+ "plain" in model_name.lower()
197
+ and "finetune" not in model_name.lower()
198
+ ):
199
+ template_name = "v1_mmtag"
200
+ else:
201
+ template_name = "llava_v1"
202
+ elif "mpt" in model_name.lower():
203
+ template_name = "mpt"
204
+ else:
205
+ if "mmtag" in model_name.lower():
206
+ template_name = "v0_mmtag"
207
+ elif (
208
+ "plain" in model_name.lower()
209
+ and "finetune" not in model_name.lower()
210
+ ):
211
+ template_name = "v0_mmtag"
212
+ else:
213
+ template_name = "llava_v0"
214
+ elif "mpt" in model_name:
215
+ template_name = "mpt_text"
216
+ elif "llama-2" in model_name:
217
+ template_name = "llama_2"
218
+ else:
219
+ template_name = "vicuna_v1"
220
+ new_state = conv_templates[template_name].copy()
221
+ new_state.append_message(new_state.roles[0], state.messages[-2][1])
222
+ new_state.append_message(new_state.roles[1], None)
223
+ state = new_state
224
+
225
+ # Query worker address
226
+ controller_url = args.controller_url
227
+ ret = requests.post(
228
+ controller_url + "/get_worker_address", json={"model": model_name}
229
+ )
230
+ worker_addr = ret.json()["address"]
231
+ logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
232
+
233
+ # No available worker
234
+ if worker_addr == "":
235
+ state.messages[-1][-1] = server_error_msg
236
+ yield (
237
+ state,
238
+ state.to_gradio_chatbot(),
239
+ disable_btn,
240
+ disable_btn,
241
+ disable_btn,
242
+ enable_btn,
243
+ enable_btn,
244
+ )
245
+ return
246
+
247
+ # Construct prompt
248
+ prompt = state.get_prompt()
249
+
250
+ all_images = state.get_images(return_pil=True)
251
+ all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
252
+ for image, hash in zip(all_images, all_image_hash):
253
+ t = datetime.datetime.now()
254
+ filename = os.path.join(
255
+ LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg"
256
+ )
257
+ if not os.path.isfile(filename):
258
+ os.makedirs(os.path.dirname(filename), exist_ok=True)
259
+ image.save(filename)
260
+
261
+ # Make requests
262
+ pload = {
263
+ "model": model_name,
264
+ "prompt": prompt,
265
+ "temperature": float(temperature),
266
+ "top_p": float(top_p),
267
+ "max_new_tokens": min(int(max_new_tokens), 1536),
268
+ "stop": state.sep
269
+ if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT]
270
+ else state.sep2,
271
+ "images": f"List of {len(state.get_images())} images: {all_image_hash}",
272
+ }
273
+ logger.info(f"==== request ====\n{pload}")
274
+
275
+ pload["images"] = state.get_images()
276
+
277
+ state.messages[-1][-1] = "▌"
278
+ yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
279
+
280
+ try:
281
+ # Stream output
282
+ response = requests.post(
283
+ worker_addr + "/worker_generate_stream",
284
+ headers=headers,
285
+ json=pload,
286
+ stream=True,
287
+ timeout=10,
288
+ )
289
+ for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
290
+ if chunk:
291
+ data = json.loads(chunk.decode())
292
+ if data["error_code"] == 0:
293
+ output = data["text"][len(prompt) :].strip()
294
+ state.messages[-1][-1] = output + "▌"
295
+ yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
296
+ else:
297
+ output = data["text"] + f" (error_code: {data['error_code']})"
298
+ state.messages[-1][-1] = output
299
+ yield (state, state.to_gradio_chatbot()) + (
300
+ disable_btn,
301
+ disable_btn,
302
+ disable_btn,
303
+ enable_btn,
304
+ enable_btn,
305
+ )
306
+ return
307
+ time.sleep(0.03)
308
+ except requests.exceptions.RequestException as e:
309
+ state.messages[-1][-1] = server_error_msg
310
+ yield (state, state.to_gradio_chatbot()) + (
311
+ disable_btn,
312
+ disable_btn,
313
+ disable_btn,
314
+ enable_btn,
315
+ enable_btn,
316
+ )
317
+ return
318
+
319
+ state.messages[-1][-1] = state.messages[-1][-1][:-1]
320
+ yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
321
+
322
+ finish_tstamp = time.time()
323
+ logger.info(f"{output}")
324
+
325
+ with open(get_conv_log_filename(), "a") as fout:
326
+ data = {
327
+ "tstamp": round(finish_tstamp, 4),
328
+ "type": "chat",
329
+ "model": model_name,
330
+ "start": round(start_tstamp, 4),
331
+ "finish": round(start_tstamp, 4),
332
+ "state": state.dict(),
333
+ "images": all_image_hash,
334
+ "ip": request.client.host,
335
+ }
336
+ fout.write(json.dumps(data) + "\n")
337
+
338
+
339
+ title_markdown = """
340
+ # CXR-LLaVA: Chest X-Ray Large Language and Vision Assistant - Online Demo
341
+ 🥰 This project is based on the codebase of [LLaVA](https://llava-vl.github.io/) by Haotian Liu et al. Many thanks to them! As CXR-LLaVA is temporarily not released as a paper, please [cite their work](https://github.com/haotian-liu/LLaVA/tree/main#citation) if you are further developing on CXR-LLaVA.
342
+ """
343
+
344
+ tos_markdown = """
345
+ ### Terms of use
346
+ By using this service, users are required to agree to the following terms:
347
+ The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
348
+ Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
349
+ For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
350
+ """
351
+
352
+
353
+ learn_more_markdown = """
354
+ ### License
355
+ The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
356
+ """
357
+
358
+ block_css = """
359
+
360
+ #buttons button {
361
+ min-width: min(120px,100%);
362
+ }
363
+
364
+ """
365
+
366
+
367
+ def build_demo(embed_mode):
368
+ models = get_model_list()
369
+
370
+ textbox = gr.Textbox(
371
+ show_label=False, placeholder="Enter text and press ENTER", container=False
372
+ )
373
+ with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo:
374
+ state = gr.State(default_conversation.copy())
375
+
376
+ if not embed_mode:
377
+ gr.Markdown(title_markdown)
378
+
379
+ with gr.Row():
380
+ with gr.Column(scale=3):
381
+ with gr.Row(elem_id="model_selector_row"):
382
+ model_selector = gr.Dropdown(
383
+ choices=models,
384
+ value=models[0] if models else "Downloading the models...",
385
+ interactive=True if models else False,
386
+ show_label=False,
387
+ container=False,
388
+ )
389
+
390
+ imagebox = gr.Image(type="pil")
391
+ image_process_mode = gr.Radio(
392
+ ["Crop", "Resize", "Pad", "Default"],
393
+ value="Default",
394
+ label="Preprocess for non-square image",
395
+ visible=False,
396
+ )
397
+
398
+ cur_dir = os.path.dirname(os.path.abspath(__file__))
399
+ gr.Examples(
400
+ examples=[
401
+ [
402
+ f"{cur_dir}/examples/extreme_ironing.jpg",
403
+ "What is unusual about this image?",
404
+ ],
405
+ [
406
+ f"{cur_dir}/examples/waterview.jpg",
407
+ "What are the things I should be cautious about when I visit here?",
408
+ ],
409
+ ],
410
+ inputs=[imagebox, textbox],
411
+ )
412
+
413
+ with gr.Accordion("Parameters", open=False) as parameter_row:
414
+ temperature = gr.Slider(
415
+ minimum=0.0,
416
+ maximum=1.0,
417
+ value=0.2,
418
+ step=0.1,
419
+ interactive=True,
420
+ label="Temperature",
421
+ )
422
+ top_p = gr.Slider(
423
+ minimum=0.0,
424
+ maximum=1.0,
425
+ value=0.7,
426
+ step=0.1,
427
+ interactive=True,
428
+ label="Top P",
429
+ )
430
+ max_output_tokens = gr.Slider(
431
+ minimum=0,
432
+ maximum=1024,
433
+ value=512,
434
+ step=64,
435
+ interactive=True,
436
+ label="Max output tokens",
437
+ )
438
+
439
+ with gr.Column(scale=8):
440
+ chatbot = gr.Chatbot(
441
+ elem_id="chatbot", label="LLaVA Chatbot", height=550
442
+ )
443
+ with gr.Row():
444
+ with gr.Column(scale=8):
445
+ textbox.render()
446
+ with gr.Column(scale=1, min_width=50):
447
+ submit_btn = gr.Button(
448
+ value="Send", variant="primary", interactive=False
449
+ )
450
+ with gr.Row(elem_id="buttons") as button_row:
451
+ upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
452
+ downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
453
+ flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
454
+ # stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
455
+ regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
456
+ clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
457
+
458
+ if not embed_mode:
459
+ gr.Markdown(tos_markdown)
460
+ gr.Markdown(learn_more_markdown)
461
+ url_params = gr.JSON(visible=False)
462
+
463
+ # Register listeners
464
+ btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
465
+ upvote_btn.click(
466
+ upvote_last_response,
467
+ [state, model_selector],
468
+ [textbox, upvote_btn, downvote_btn, flag_btn],
469
+ )
470
+ downvote_btn.click(
471
+ downvote_last_response,
472
+ [state, model_selector],
473
+ [textbox, upvote_btn, downvote_btn, flag_btn],
474
+ )
475
+ flag_btn.click(
476
+ flag_last_response,
477
+ [state, model_selector],
478
+ [textbox, upvote_btn, downvote_btn, flag_btn],
479
+ )
480
+ regenerate_btn.click(
481
+ regenerate,
482
+ [state, image_process_mode],
483
+ [state, chatbot, textbox, imagebox] + btn_list,
484
+ ).then(
485
+ http_bot,
486
+ [state, model_selector, temperature, top_p, max_output_tokens],
487
+ [state, chatbot] + btn_list,
488
+ )
489
+ clear_btn.click(
490
+ clear_history, None, [state, chatbot, textbox, imagebox] + btn_list
491
+ )
492
+
493
+ textbox.submit(
494
+ add_text,
495
+ [state, textbox, imagebox, image_process_mode],
496
+ [state, chatbot, textbox, imagebox] + btn_list,
497
+ ).then(
498
+ http_bot,
499
+ [state, model_selector, temperature, top_p, max_output_tokens],
500
+ [state, chatbot] + btn_list,
501
+ )
502
+ submit_btn.click(
503
+ add_text,
504
+ [state, textbox, imagebox, image_process_mode],
505
+ [state, chatbot, textbox, imagebox] + btn_list,
506
+ ).then(
507
+ http_bot,
508
+ [state, model_selector, temperature, top_p, max_output_tokens],
509
+ [state, chatbot] + btn_list,
510
+ )
511
+
512
+ if args.model_list_mode == "once":
513
+ demo.load(
514
+ load_demo,
515
+ [url_params],
516
+ [state, model_selector],
517
+ _js=get_window_url_params,
518
+ )
519
+ elif args.model_list_mode == "reload":
520
+ demo.load(
521
+ load_demo_refresh_model_list, None, [state, model_selector, submit_btn]
522
+ )
523
+ else:
524
+ raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
525
+
526
+ return demo
527
+
528
+
529
+ def start_controller():
530
+ logger.info("Starting the controller")
531
+ controller_command = [
532
+ "python",
533
+ "-m",
534
+ "llava.serve.controller",
535
+ "--host",
536
+ "0.0.0.0",
537
+ "--port",
538
+ "10000",
539
+ ]
540
+ return subprocess.Popen(controller_command)
541
+
542
+
543
+ def start_worker(model_path: str, bits=16):
544
+ logger.info(f"Starting the model worker for the model {model_path}")
545
+ model_name = model_path.strip("/").split("/")[-1]
546
+ assert bits in [4, 8, 16], "It can be only loaded with 16-bit, 8-bit, and 4-bit."
547
+ if bits != 16:
548
+ model_name += f"-{bits}bit"
549
+ worker_command = [
550
+ "python",
551
+ "-m",
552
+ "llava.serve.model_worker",
553
+ "--host",
554
+ "0.0.0.0",
555
+ "--controller",
556
+ "http://localhost:10000",
557
+ "--model-path",
558
+ model_path,
559
+ "--model-name",
560
+ model_name,
561
+ ]
562
+ if bits != 16:
563
+ worker_command += [f"--load-{bits}bit"]
564
+ return subprocess.Popen(worker_command)
565
+
566
+
567
+ def get_args():
568
+ parser = argparse.ArgumentParser()
569
+ parser.add_argument("--host", type=str, default="0.0.0.0")
570
+ parser.add_argument("--port", type=int)
571
+ parser.add_argument("--controller-url", type=str, default="http://localhost:10000")
572
+ parser.add_argument("--concurrency-count", type=int, default=8)
573
+ parser.add_argument(
574
+ "--model-list-mode", type=str, default="reload", choices=["once", "reload"]
575
+ )
576
+ parser.add_argument("--share", action="store_true")
577
+ parser.add_argument("--moderate", action="store_true")
578
+ parser.add_argument("--embed", action="store_true")
579
+
580
+ args = parser.parse_args()
581
+
582
+ return args
583
+
584
+
585
+ def start_demo(args):
586
+ demo = build_demo(args.embed)
587
+ demo.queue(
588
+ concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False
589
+ ).launch(server_name=args.host, server_port=args.port, share=args.share)
590
+
591
+
592
+ if __name__ == "__main__":
593
+ args = get_args()
594
+ logger.info(f"args: {args}")
595
+
596
+ model_path = "models/TommyIX/CXR-LLaVA-7b"
597
+ bits = int(os.getenv("bits", 8))
598
+
599
+ controller_proc = start_controller()
600
+ worker_proc = start_worker(model_path, bits=bits)
601
+
602
+ # Wait for worker and controller to start
603
+ time.sleep(10)
604
+
605
+ exit_status = 0
606
+ try:
607
+ start_demo(args)
608
+ except Exception as e:
609
+ print(e)
610
+ exit_status = 1
611
+ finally:
612
+ worker_proc.kill()
613
+ controller_proc.kill()
614
+
615
+ sys.exit(exit_status)
data/prompts/complex_reasoning/000_caps.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A man wearing multiple neck ties making a goofy face.
2
+ A man in a white shirt wearing very many ties.
3
+ a man with ties on poses for a picture
4
+ A man wearing multiple ties on his neck.
5
+ A young man smiles while wearing several ties.
6
+
7
+ tie: [0.574, 0.298, 0.752, 0.704]
8
+ tie: [0.464, 0.339, 0.639, 0.789]
9
+ tie: [0.349, 0.363, 0.563, 0.732]
10
+ tie: [0.259, 0.255, 0.668, 0.805]
11
+ person: [0.019, 0.065, 0.962, 0.988]
12
+ person: [0.0, 0.24, 0.214, 1.0]
13
+ tie: [0.316, 0.778, 0.443, 0.867]
14
+ tie: [0.386, 0.707, 0.496, 0.801]
15
+ tie: [0.251, 0.354, 0.402, 0.747]
16
+ tie: [0.44, 0.318, 0.63, 0.397]
17
+ tie: [0.566, 0.33, 0.655, 0.543]
18
+ tie: [0.25, 0.409, 0.359, 0.556]
data/prompts/complex_reasoning/000_conv.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Question:
2
+ What is unusual about this photo?
3
+ ===
4
+ Answer:
5
+ In the photo, the man is wearing a total of ten ties around his neck. This is considered unusual because it is not common for someone to wear multiple ties at once. In a typical setting, a person would wear only one tie. The man's goofy facial expression also adds to the unconventional and humorous nature of the image.
data/prompts/complex_reasoning/001_caps.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A group of people standing outside of a black vehicle with various luggage.
2
+ Luggage surrounds a vehicle in an underground parking area
3
+ People try to fit all of their luggage in an SUV.
4
+ The sport utility vehicle is parked in the public garage, being packed for a trip
5
+ Some people with luggage near a van that is transporting it.
6
+
7
+ person: [0.681, 0.242, 0.774, 0.694]
8
+ person: [0.63, 0.222, 0.686, 0.516]
9
+ person: [0.444, 0.233, 0.487, 0.34]
10
+ backpack: [0.384, 0.696, 0.485, 0.914]
11
+ backpack: [0.755, 0.413, 0.846, 0.692]
12
+ suitcase: [0.758, 0.413, 0.845, 0.69]
13
+ suitcase: [0.1, 0.497, 0.173, 0.579]
14
+ bicycle: [0.282, 0.363, 0.327, 0.442]
15
+ car: [0.786, 0.25, 0.848, 0.322]
16
+ car: [0.783, 0.27, 0.827, 0.335]
17
+ car: [0.86, 0.254, 0.891, 0.3]
18
+ car: [0.261, 0.101, 0.787, 0.626]
data/prompts/complex_reasoning/001_conv.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Question:
2
+ What challenges do these people face?
3
+ ===
4
+ Answer:
5
+ In the image, a group of people is standing outside a black SUV in a parking area, surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks to be packed, which suggests that the group has a significant amount of belongings to accommodate. They might have to strategize and arrange the luggage efficiently to ensure that everything fits properly into the vehicle. Additionally, they need to consider the comfort of the passengers and visibility while driving, so the placement of the luggage must not obstruct the driver's view or make the passengers uncomfortable during the trip.
data/prompts/complex_reasoning/002_caps.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ There is a movie theater that displays the show times above the doors.
2
+ A red fire hydrant is deep in the snow.
3
+ The fire hydrant is in the snow near a recently plowed sidewalk.
4
+ This city has had a very hard winter with snow.
5
+ A hotel for dogs in the snow in winter.
6
+
7
+ fire hydrant: [0.326, 0.612, 0.426, 0.72]
data/prompts/complex_reasoning/002_conv.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Question:
2
+ What challenges might this city face?
3
+ ===
4
+ Answer:
5
+ The city faces challenges due to the harsh winter conditions and heavy snowfall. In the image, a red fire hydrant is almost buried deep in the snow, which indicates the significant amount of snow the city has experienced. This can lead to various challenges such as difficulties in transportation, increased risk of accidents, and disruptions to daily life. For example, the recently plowed sidewalk near the fire hydrant shows that the city has to constantly clear snow from roads and sidewalks to maintain access and safety for pedestrians and vehicles. Moreover, emergency services, like firefighters, might face challenges accessing crucial equipment, such as fire hydrants, during emergencies due to the snow accumulation. This highlights the importance of effective snow management strategies and preparedness in such cities to minimize the impact of harsh winter conditions on residents and essential services.
data/prompts/complex_reasoning/system_message.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y.
2
+
3
+ The task is to use the provided caption and bounding box information, create a plausible question about the image, and provide the answer in detail.
4
+
5
+ Create complex questions beyond describing the scene.
6
+ To answer such questions, one should require first understanding the visual content, then based on the background knowledge or reasoning, either explain why the things are happening that way, or provide guides and help to user's request. Make the question challenging by not including the visual content details in the question so that the user needs to reason about that first.
7
+
8
+ Instead of directly mentioning the bounding box coordinates, utilize this data to explain the scene using natural language. Include details like object counts, position of the objects, relative position between the objects.
9
+
10
+ When using the information from the caption and coordinates, directly explain the scene, and do not mention that the information source is the caption or the bounding box. Always answer as if you are directly looking at the image.
data/prompts/conversation/000_caps.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ There is a movie theater that displays the show times above the doors.
2
+ A red fire hydrant is deep in the snow.
3
+ The fire hydrant is in the snow near a recently plowed sidewalk.
4
+ This city has had a very hard winter with snow.
5
+ A hotel for dogs in the snow in winter.
data/prompts/conversation/000_conv.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Question:
2
+ What color is the fire hydrant in the image?
3
+ ===
4
+ Answer:
5
+ The fire hydrant in the image is red.
6
+ ===
7
+ Question:
8
+ Is the fire hydrant fully covered by snow or partially visible?
9
+ ===
10
+ Answer:
11
+ The fire hydrant is partially visible, with a significant portion of it covered by the deep snow.
12
+ ===
13
+ Question:
14
+ What is the condition of the sidewalk near the fire hydrant?
15
+ ===
16
+ Answer:
17
+ The sidewalk near the fire hydrant has been recently plowed, so it is relatively clear of snow compared to the surrounding area.
18
+ ===
19
+ Question:
20
+ What does the image suggest about the winter season in the city?
21
+ ===
22
+ Answer:
23
+ The image suggests that the winter season in the city has been quite harsh and challenging. The significant snow accumulation seen in the image indicates that the city has experienced heavy snowfall, which can lead to various difficulties and disruptions for its residents.
24
+
25
+ For instance, the deep snow covering the fire hydrant could potentially hinder its accessibility in case of emergencies, which poses safety concerns. The recently plowed sidewalk implies that the city's maintenance crews have been actively working to keep the walkways clear and safe for pedestrians, but the sheer amount of snowfall might make it difficult to keep up with the continuous snow removal efforts.
26
+
27
+ Furthermore, such extreme winter conditions can impact transportation, leading to traffic issues, delays in public transit, and increased risks of accidents due to slippery roads. It can also cause problems for businesses and schools, as people might face challenges commuting to work or attending classes. Additionally, the heavy snow can put extra strain on infrastructure, such as roofs and power lines, increasing the likelihood of structural damage or power outages.
28
+
29
+ In conclusion, the image of the red fire hydrant deep in the snow and the recently plowed sidewalk suggest that the city has faced a particularly severe winter season, with substantial snowfall that has likely caused various challenges and disruptions for its residents and infrastructure.
data/prompts/conversation/001_caps.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ A man is skiing in the open snow covered hills
2
+ A skier is making his way into the snow.
3
+ A skier on the foothills of a huge mountain range.
4
+ A skier looks at mountains while standing near a trail sign.
5
+ a single person skiing by an area with a lot of bushes
data/prompts/conversation/001_conv.txt ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Question:
2
+ What is the skier doing?
3
+ ===
4
+ Answer:
5
+ The skier is skiing in the snow-covered hills, making his way through the snow and enjoying the beautiful mountain scenery. They are also standing near a trail sign, which indicates their location on the mountain.
6
+ ===
7
+ Question:
8
+ Are there any other people or skiers visible in the image?
9
+ ===
10
+ Answer:
11
+ No, there is only a single person skiing in the image, and they are surrounded by an area with a lot of bushes.
12
+ ===
13
+ Question:
14
+ What kind of skiing is the person doing? Cross-country or downhill?
15
+ ===
16
+ Answer:
17
+ Based on what I can see in the photo, it is not possible to definitively determine whether the skier is doing cross-country or downhill skiing. However, given the presence of a trail sign and the fact that they are skiing in the foothills, it is more likely that the skier is engaged in cross-country skiing. Downhill skiing typically takes place on more steep slopes and involves ski lifts, whereas cross-country skiing often occurs on relatively flatter terrain with marked trails.
18
+ ===
19
+ Question:
20
+ Can you explain cross-country and downhill skiing a bit more?
21
+ ===
22
+ Answer:
23
+ Cross-country skiing and downhill skiing are two distinct types of skiing, each with its own techniques, equipment, and terrain preferences.
24
+
25
+ 1. Cross-Country Skiing:
26
+ Also known as Nordic skiing, cross-country skiing involves traversing relatively flat terrain or gentle slopes using skis and poles. It is a popular recreational and competitive sport that focuses on endurance, balance, and aerobic fitness. Cross-country skiers use their own locomotion to move across snow-covered terrain, rather than relying on ski lifts or other forms of assistance.
27
+ There are two main techniques in cross-country skiing:
28
+ - Classic: This technique involves skiing in parallel tracks, using a forward-and-backward gliding motion while keeping the skis parallel to each other. The skier uses their poles to propel themselves forward.
29
+ - Skate skiing: This technique is similar to ice skating, where the skier pushes off one ski at an angle and glides on the other. It requires a smooth, groomed surface and is typically faster than the classic technique.
30
+ Cross-country ski equipment consists of lightweight skis, boots, bindings, and poles. The boots are more flexible than those used in downhill skiing, allowing for better ankle movement and control.
31
+
32
+ 2. Downhill Skiing:
33
+ Also known as alpine skiing, downhill skiing involves descending slopes at high speeds using skis and poles for balance and control. This sport is more focused on speed, technique, and navigating challenging terrain, including steep slopes, moguls, and even jumps.
34
+ Downhill skiing can be further categorized into several disciplines, such as slalom, giant slalom, super-G, and downhill racing. Each discipline has its own set of rules, courses, and ski equipment.
35
+ Downhill ski equipment includes heavier and stiffer skis, boots, bindings, and poles than those used in cross-country skiing. The boots are more rigid to provide better support and control during high-speed descents and sharp turns.
36
+
37
+ In summary, cross-country skiing is an endurance-based sport that involves traveling across flat or gently sloping terrain, while downhill skiing is focused on speed and technique as skiers navigate steeper slopes and challenging terrain. Both sports require specialized equipment and techniques, but they offer different experiences and challenges to participants.
data/prompts/conversation/system_message.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You are an AI visual assistant, and you are seeing a single image. What you see are provided with five sentences, describing the same image you are looking at. Answer all questions as you are seeing the image.
2
+
3
+ Design a conversation between you and a person asking about this photo. The answers should be in a tone that a visual AI assistant is seeing the image and answering the question.
4
+ Ask diverse questions and give corresponding answers.
5
+
6
+ Include questions asking about the visual content of the image, including the object types, counting the objects, object actions, object locations, relative positions between objects, etc. Only include questions that have definite answers:
7
+ (1) one can see the content in the image that the question asks about and can answer confidently;
8
+ (2) one can determine confidently from the image that it is not in the image.
9
+ Do not ask any question that cannot be answered confidently.
10
+
11
+ Also include complex questions that are relevant to the content in the image, for example, asking about background knowledge of the objects in the image, asking to discuss about events happening in the image, etc. Again, do not ask about uncertain details.
12
+ Provide detailed answers when answering complex questions. For example, give detailed examples or reasoning steps to make the content more convincing and well-organized. You can include multiple paragraphs if necessary.
data/prompts/detail_description/000_caps.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A harbor filled with lots of boats next to a building.
2
+ A bicycle parked in front of several boats at a dock.
3
+ A red bicycle in front of a line of docked white yachts
4
+ A bike sits before boats which sit before a long building.
5
+ A bicycle is a convenient means of land transportation when you live on a boat.
6
+
7
+ bicycle: [0.287, 0.641, 0.507, 0.874]
8
+ bicycle: [0.566, 0.667, 0.63, 0.731]
9
+ boat: [0.318, 0.579, 0.575, 0.724]
10
+ boat: [0.704, 0.607, 0.818, 0.727]
11
+ boat: [0.818, 0.601, 0.942, 0.744]
12
+ boat: [0.002, 0.53, 0.243, 0.71]
13
+ boat: [0.541, 0.611, 0.668, 0.731]
14
+ person: [0.778, 0.527, 0.797, 0.57]
15
+ cup: [0.708, 0.733, 0.724, 0.758]
16
+ boat: [0.236, 0.532, 0.404, 0.64]
17
+ boat: [0.81, 0.632, 0.836, 0.676]
18
+ boat: [0.957, 0.526, 1.0, 0.752]
data/prompts/detail_description/000_conv.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ It is a harbor filled with numerous boats of various sizes docked next to a long building. Among the boats, there are a few white yachts lined up, standing out from the rest. There is a red bicycle prominently parked in front of the line of docked boats, serving as a convenient means of land transportation for those living on the boats. Another bicycle can be seen further back in the scene, near the middle of the harbor.
2
+
3
+ A person is visible near the right side of the harbor, possibly enjoying the view or attending to their boat. Additionally, there is a cup placed on a surface near the middle of the scene.
data/prompts/detail_description/001_caps.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A group of people standing outside of a black vehicle with various luggage.
2
+ Luggage surrounds a vehicle in an underground parking area
3
+ People try to fit all of their luggage in an SUV.
4
+ The sport utility vehicle is parked in the public garage, being packed for a trip
5
+ Some people with luggage near a van that is transporting it.
6
+
7
+ person: [0.681, 0.242, 0.774, 0.694]
8
+ person: [0.63, 0.222, 0.686, 0.516]
9
+ person: [0.444, 0.233, 0.487, 0.34]
10
+ backpack: [0.384, 0.696, 0.485, 0.914]
11
+ backpack: [0.755, 0.413, 0.846, 0.692]
12
+ suitcase: [0.758, 0.413, 0.845, 0.69]
13
+ suitcase: [0.1, 0.497, 0.173, 0.579]
14
+ bicycle: [0.282, 0.363, 0.327, 0.442]
15
+ car: [0.786, 0.25, 0.848, 0.322]
16
+ car: [0.783, 0.27, 0.827, 0.335]
17
+ car: [0.86, 0.254, 0.891, 0.3]
18
+ car: [0.261, 0.101, 0.787, 0.626]
data/prompts/detail_description/001_conv.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ The image is an underground parking area with a black sport utility vehicle (SUV) parked. There are three people in the scene, with one person standing closer to the left side of the vehicle, another person in the middle, and the third person on the right side. They are all working together to pack their luggage into the SUV for a trip.
2
+
3
+ In the parking area, various luggage items are scattered around the vehicle. There are two backpacks, one located near the left rear wheel and the other closer to the right side of the vehicle. Additionally, there are two suitcases, one on the right side of the car and another further away near the center of the parking area. A bicycle can also be seen on the left side of the vehicle.
4
+
5
+ Other cars are parked around the main SUV, with one car positioned behind it and slightly to the left, another behind and slightly to the right, and the third car further behind on the right side.
data/prompts/detail_description/002_caps.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A man holds a Wii-mote above his head while another looks on.
2
+ A guy and his friend are playing Nintendo Wii.
3
+ A young man is holding a video game remote over his head.
4
+ two men standing in a room while one plays with a wii mote
5
+ Some guys standing and playing a video game.
6
+
7
+ couch: [0.697, 0.759, 0.995, 1.0]
8
+ dining table: [0.426, 0.755, 1.0, 0.987]
9
+ person: [0.082, 0.252, 0.342, 1.0]
10
+ person: [0.399, 0.085, 0.742, 0.982]
11
+ remote: [0.477, 0.135, 0.516, 0.187]
12
+ sink: [0.016, 0.501, 0.063, 0.52]
13
+ potted plant: [0.798, 0.384, 0.888, 0.645]
14
+ refrigerator: [0.305, 0.389, 0.414, 0.547]
15
+ chair: [0.72, 0.509, 0.858, 0.725]
data/prompts/detail_description/002_conv.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ The image shows two men standing in a room, engaged in playing a video game on a Nintendo Wii console. One of the men is holding a Wii remote above his head with enthusiasm, while the other man looks on, likely enjoying the friendly competition.
2
+
3
+ The room appears to be a living space with a couch located in the background and a dining table nearby. A potted plant can be seen placed close to the couch, and a chair is situated in the middle of the room. The room also features a kitchen area with a sink and a refrigerator visible in the background.
data/prompts/detail_description/system_message.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y.
2
+
3
+ Using the provided caption and bounding box information, describe the scene in a detailed manner.
4
+
5
+ Instead of directly mentioning the bounding box coordinates, utilize this data to explain the scene using natural language. Include details like object counts, position of the objects, relative position between the objects.
6
+
7
+ When using the information from the caption and coordinates, directly explain the scene, and do not mention that the information source is the caption or the bounding box. Always answer as if you are directly looking at the image.
llava/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .model import LlavaLlamaForCausalLM
llava/constants.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
2
+ WORKER_HEART_BEAT_INTERVAL = 15
3
+
4
+ LOGDIR = "."
5
+
6
+ # Model Constants
7
+ IGNORE_INDEX = -100
8
+ IMAGE_TOKEN_INDEX = -200
9
+ DEFAULT_IMAGE_TOKEN = "<image>"
10
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
11
+ DEFAULT_IM_START_TOKEN = "<im_start>"
12
+ DEFAULT_IM_END_TOKEN = "<im_end>"
llava/conversation.py ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import auto, Enum
3
+ from typing import List, Tuple
4
+
5
+
6
+ class SeparatorStyle(Enum):
7
+ """Different separator style."""
8
+ SINGLE = auto()
9
+ TWO = auto()
10
+ MPT = auto()
11
+ PLAIN = auto()
12
+ LLAMA_2 = auto()
13
+
14
+
15
+ @dataclasses.dataclass
16
+ class Conversation:
17
+ """A class that keeps all conversation history."""
18
+ system: str
19
+ roles: List[str]
20
+ messages: List[List[str]]
21
+ offset: int
22
+ sep_style: SeparatorStyle = SeparatorStyle.SINGLE
23
+ sep: str = "###"
24
+ sep2: str = None
25
+ version: str = "Unknown"
26
+
27
+ skip_next: bool = False
28
+
29
+ def get_prompt(self):
30
+ messages = self.messages
31
+ if len(messages) > 0 and type(messages[0][1]) is tuple:
32
+ messages = self.messages.copy()
33
+ init_role, init_msg = messages[0].copy()
34
+ init_msg = init_msg[0].replace("<image>", "").strip()
35
+ if 'mmtag' in self.version:
36
+ messages[0] = (init_role, init_msg)
37
+ messages.insert(0, (self.roles[0], "<Image><image></Image>"))
38
+ messages.insert(1, (self.roles[1], "Received."))
39
+ else:
40
+ messages[0] = (init_role, "<image>\n" + init_msg)
41
+
42
+ if self.sep_style == SeparatorStyle.SINGLE:
43
+ ret = self.system + self.sep
44
+ for role, message in messages:
45
+ if message:
46
+ if type(message) is tuple:
47
+ message, _, _ = message
48
+ ret += role + ": " + message + self.sep
49
+ else:
50
+ ret += role + ":"
51
+ elif self.sep_style == SeparatorStyle.TWO:
52
+ seps = [self.sep, self.sep2]
53
+ ret = self.system + seps[0]
54
+ for i, (role, message) in enumerate(messages):
55
+ if message:
56
+ if type(message) is tuple:
57
+ message, _, _ = message
58
+ ret += role + ": " + message + seps[i % 2]
59
+ else:
60
+ ret += role + ":"
61
+ elif self.sep_style == SeparatorStyle.MPT:
62
+ ret = self.system + self.sep
63
+ for role, message in messages:
64
+ if message:
65
+ if type(message) is tuple:
66
+ message, _, _ = message
67
+ ret += role + message + self.sep
68
+ else:
69
+ ret += role
70
+ elif self.sep_style == SeparatorStyle.LLAMA_2:
71
+ wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
72
+ wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
73
+ ret = ""
74
+
75
+ for i, (role, message) in enumerate(messages):
76
+ if i == 0:
77
+ assert message, "first message should not be none"
78
+ assert role == self.roles[0], "first message should come from user"
79
+ if message:
80
+ if type(message) is tuple:
81
+ message, _, _ = message
82
+ if i == 0: message = wrap_sys(self.system) + message
83
+ if i % 2 == 0:
84
+ message = wrap_inst(message)
85
+ ret += self.sep + message
86
+ else:
87
+ ret += " " + message + " " + self.sep2
88
+ else:
89
+ ret += ""
90
+ ret = ret.lstrip(self.sep)
91
+ elif self.sep_style == SeparatorStyle.PLAIN:
92
+ seps = [self.sep, self.sep2]
93
+ ret = self.system
94
+ for i, (role, message) in enumerate(messages):
95
+ if message:
96
+ if type(message) is tuple:
97
+ message, _, _ = message
98
+ ret += message + seps[i % 2]
99
+ else:
100
+ ret += ""
101
+ else:
102
+ raise ValueError(f"Invalid style: {self.sep_style}")
103
+
104
+ return ret
105
+
106
+ def append_message(self, role, message):
107
+ self.messages.append([role, message])
108
+
109
+ def get_images(self, return_pil=False):
110
+ images = []
111
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
112
+ if i % 2 == 0:
113
+ if type(msg) is tuple:
114
+ import base64
115
+ from io import BytesIO
116
+ from PIL import Image
117
+ msg, image, image_process_mode = msg
118
+ if image_process_mode == "Pad":
119
+ def expand2square(pil_img, background_color=(122, 116, 104)):
120
+ width, height = pil_img.size
121
+ if width == height:
122
+ return pil_img
123
+ elif width > height:
124
+ result = Image.new(pil_img.mode, (width, width), background_color)
125
+ result.paste(pil_img, (0, (width - height) // 2))
126
+ return result
127
+ else:
128
+ result = Image.new(pil_img.mode, (height, height), background_color)
129
+ result.paste(pil_img, ((height - width) // 2, 0))
130
+ return result
131
+ image = expand2square(image)
132
+ elif image_process_mode in ["Default", "Crop"]:
133
+ pass
134
+ elif image_process_mode == "Resize":
135
+ image = image.resize((336, 336))
136
+ else:
137
+ raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
138
+ max_hw, min_hw = max(image.size), min(image.size)
139
+ aspect_ratio = max_hw / min_hw
140
+ max_len, min_len = 800, 400
141
+ shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
142
+ longest_edge = int(shortest_edge * aspect_ratio)
143
+ W, H = image.size
144
+ if longest_edge != max(image.size):
145
+ if H > W:
146
+ H, W = longest_edge, shortest_edge
147
+ else:
148
+ H, W = shortest_edge, longest_edge
149
+ image = image.resize((W, H))
150
+ if return_pil:
151
+ images.append(image)
152
+ else:
153
+ buffered = BytesIO()
154
+ image.save(buffered, format="PNG")
155
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
156
+ images.append(img_b64_str)
157
+ return images
158
+
159
+ def to_gradio_chatbot(self):
160
+ ret = []
161
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
162
+ if i % 2 == 0:
163
+ if type(msg) is tuple:
164
+ import base64
165
+ from io import BytesIO
166
+ msg, image, image_process_mode = msg
167
+ max_hw, min_hw = max(image.size), min(image.size)
168
+ aspect_ratio = max_hw / min_hw
169
+ max_len, min_len = 800, 400
170
+ shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
171
+ longest_edge = int(shortest_edge * aspect_ratio)
172
+ W, H = image.size
173
+ if H > W:
174
+ H, W = longest_edge, shortest_edge
175
+ else:
176
+ H, W = shortest_edge, longest_edge
177
+ image = image.resize((W, H))
178
+ buffered = BytesIO()
179
+ image.save(buffered, format="JPEG")
180
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
181
+ img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
182
+ msg = img_str + msg.replace('<image>', '').strip()
183
+ ret.append([msg, None])
184
+ else:
185
+ ret.append([msg, None])
186
+ else:
187
+ ret[-1][-1] = msg
188
+ return ret
189
+
190
+ def copy(self):
191
+ return Conversation(
192
+ system=self.system,
193
+ roles=self.roles,
194
+ messages=[[x, y] for x, y in self.messages],
195
+ offset=self.offset,
196
+ sep_style=self.sep_style,
197
+ sep=self.sep,
198
+ sep2=self.sep2,
199
+ version=self.version)
200
+
201
+ def dict(self):
202
+ if len(self.get_images()) > 0:
203
+ return {
204
+ "system": self.system,
205
+ "roles": self.roles,
206
+ "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
207
+ "offset": self.offset,
208
+ "sep": self.sep,
209
+ "sep2": self.sep2,
210
+ }
211
+ return {
212
+ "system": self.system,
213
+ "roles": self.roles,
214
+ "messages": self.messages,
215
+ "offset": self.offset,
216
+ "sep": self.sep,
217
+ "sep2": self.sep2,
218
+ }
219
+
220
+
221
+ conv_vicuna_v0 = Conversation(
222
+ system="A chat between a curious human and an artificial intelligence assistant. "
223
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
224
+ roles=("Human", "Assistant"),
225
+ messages=(
226
+ ("Human", "What are the key differences between renewable and non-renewable energy sources?"),
227
+ ("Assistant",
228
+ "Renewable energy sources are those that can be replenished naturally in a relatively "
229
+ "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
230
+ "Non-renewable energy sources, on the other hand, are finite and will eventually be "
231
+ "depleted, such as coal, oil, and natural gas. Here are some key differences between "
232
+ "renewable and non-renewable energy sources:\n"
233
+ "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
234
+ "energy sources are finite and will eventually run out.\n"
235
+ "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
236
+ "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
237
+ "and other negative effects.\n"
238
+ "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
239
+ "have lower operational costs than non-renewable sources.\n"
240
+ "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
241
+ "locations than non-renewable sources.\n"
242
+ "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
243
+ "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
244
+ "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
245
+ "non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
246
+ ),
247
+ offset=2,
248
+ sep_style=SeparatorStyle.SINGLE,
249
+ sep="###",
250
+ )
251
+
252
+ conv_vicuna_v1 = Conversation(
253
+ system="A chat between a curious user and an artificial intelligence assistant. "
254
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
255
+ roles=("USER", "ASSISTANT"),
256
+ version="v1",
257
+ messages=(),
258
+ offset=0,
259
+ sep_style=SeparatorStyle.TWO,
260
+ sep=" ",
261
+ sep2="</s>",
262
+ )
263
+
264
+ conv_llama_2 = Conversation(
265
+ system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
266
+
267
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
268
+ roles=("USER", "ASSISTANT"),
269
+ version="llama_v2",
270
+ messages=(),
271
+ offset=0,
272
+ sep_style=SeparatorStyle.LLAMA_2,
273
+ sep="<s>",
274
+ sep2="</s>",
275
+ )
276
+
277
+ conv_llava_llama_2 = Conversation(
278
+ system="You are a helpful language and vision assistant. "
279
+ "You are able to understand the visual content that the user provides, "
280
+ "and assist the user with a variety of tasks using natural language.",
281
+ roles=("USER", "ASSISTANT"),
282
+ version="llama_v2",
283
+ messages=(),
284
+ offset=0,
285
+ sep_style=SeparatorStyle.LLAMA_2,
286
+ sep="<s>",
287
+ sep2="</s>",
288
+ )
289
+
290
+ conv_mpt = Conversation(
291
+ system="""<|im_start|>system
292
+ A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
293
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
294
+ version="mpt",
295
+ messages=(),
296
+ offset=0,
297
+ sep_style=SeparatorStyle.MPT,
298
+ sep="<|im_end|>",
299
+ )
300
+
301
+ conv_llava_plain = Conversation(
302
+ system="",
303
+ roles=("", ""),
304
+ messages=(
305
+ ),
306
+ offset=0,
307
+ sep_style=SeparatorStyle.PLAIN,
308
+ sep="\n",
309
+ )
310
+
311
+ conv_llava_v0 = Conversation(
312
+ system="A chat between a curious human and an artificial intelligence assistant. "
313
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
314
+ roles=("Human", "Assistant"),
315
+ messages=(
316
+ ),
317
+ offset=0,
318
+ sep_style=SeparatorStyle.SINGLE,
319
+ sep="###",
320
+ )
321
+
322
+ conv_llava_v0_mmtag = Conversation(
323
+ system="A chat between a curious user and an artificial intelligence assistant. "
324
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
325
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
326
+ roles=("Human", "Assistant"),
327
+ messages=(
328
+ ),
329
+ offset=0,
330
+ sep_style=SeparatorStyle.SINGLE,
331
+ sep="###",
332
+ version="v0_mmtag",
333
+ )
334
+
335
+ conv_llava_v1 = Conversation(
336
+ system="A chat between a curious human and an artificial intelligence assistant. "
337
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
338
+ roles=("USER", "ASSISTANT"),
339
+ version="v1",
340
+ messages=(),
341
+ offset=0,
342
+ sep_style=SeparatorStyle.TWO,
343
+ sep=" ",
344
+ sep2="</s>",
345
+ )
346
+
347
+ conv_llava_v1_mmtag = Conversation(
348
+ system="A chat between a curious user and an artificial intelligence assistant. "
349
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
350
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
351
+ roles=("USER", "ASSISTANT"),
352
+ messages=(),
353
+ offset=0,
354
+ sep_style=SeparatorStyle.TWO,
355
+ sep=" ",
356
+ sep2="</s>",
357
+ version="v1_mmtag",
358
+ )
359
+
360
+ default_conversation = conv_vicuna_v0
361
+ conv_templates = {
362
+ "default": conv_vicuna_v0,
363
+ "v0": conv_vicuna_v0,
364
+ "v1": conv_vicuna_v1,
365
+ "vicuna_v1": conv_vicuna_v1,
366
+ "llama_2": conv_llama_2,
367
+
368
+ "plain": conv_llava_plain,
369
+ "v0_plain": conv_llava_plain,
370
+ "llava_v0": conv_llava_v0,
371
+ "v0_mmtag": conv_llava_v0_mmtag,
372
+ "llava_v1": conv_llava_v1,
373
+ "v1_mmtag": conv_llava_v1_mmtag,
374
+ "llava_llama_2": conv_llava_llama_2,
375
+
376
+ "mpt": conv_mpt,
377
+ }
378
+
379
+
380
+ if __name__ == "__main__":
381
+ print(default_conversation.get_prompt())
llava/eval/eval_gpt_review.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+
5
+ import openai
6
+ import tqdm
7
+ import ray
8
+ import time
9
+
10
+ NUM_SECONDS_TO_SLEEP = 3
11
+
12
+ @ray.remote(num_cpus=4)
13
+ def get_eval(content: str, max_tokens: int):
14
+ while True:
15
+ try:
16
+ response = openai.ChatCompletion.create(
17
+ model='gpt-4',
18
+ messages=[{
19
+ 'role': 'system',
20
+ 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
21
+ }, {
22
+ 'role': 'user',
23
+ 'content': content,
24
+ }],
25
+ temperature=0.2, # TODO: figure out which temperature is best for evaluation
26
+ max_tokens=max_tokens,
27
+ )
28
+ break
29
+ except openai.error.RateLimitError:
30
+ pass
31
+ except Exception as e:
32
+ print(e)
33
+ time.sleep(NUM_SECONDS_TO_SLEEP)
34
+
35
+ print('success!')
36
+ return response['choices'][0]['message']['content']
37
+
38
+
39
+ def parse_score(review):
40
+ try:
41
+ score_pair = review.split('\n')[0]
42
+ score_pair = score_pair.replace(',', ' ')
43
+ sp = score_pair.split(' ')
44
+ if len(sp) == 2:
45
+ return [float(sp[0]), float(sp[1])]
46
+ else:
47
+ print('error', review)
48
+ return [-1, -1]
49
+ except Exception as e:
50
+ print(e)
51
+ print('error', review)
52
+ return [-1, -1]
53
+
54
+
55
+ if __name__ == '__main__':
56
+ parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
57
+ parser.add_argument('-q', '--question')
58
+ # parser.add_argument('-a', '--answer')
59
+ parser.add_argument('-a', '--answer-list', nargs='+', default=[])
60
+ parser.add_argument('-r', '--rule')
61
+ parser.add_argument('-o', '--output')
62
+ parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
63
+ args = parser.parse_args()
64
+
65
+ ray.init()
66
+
67
+ f_q = open(os.path.expanduser(args.question))
68
+ f_ans1 = open(os.path.expanduser(args.answer_list[0]))
69
+ f_ans2 = open(os.path.expanduser(args.answer_list[1]))
70
+ rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
71
+
72
+ review_file = open(f'{args.output}', 'w')
73
+
74
+ js_list = []
75
+ handles = []
76
+ idx = 0
77
+ for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
78
+ # if idx == 1:
79
+ # break
80
+
81
+ ques = json.loads(ques_js)
82
+ ans1 = json.loads(ans1_js)
83
+ ans2 = json.loads(ans2_js)
84
+
85
+ category = json.loads(ques_js)['category']
86
+ if category in rule_dict:
87
+ rule = rule_dict[category]
88
+ else:
89
+ rule = rule_dict['default']
90
+ prompt = rule['prompt']
91
+ role = rule['role']
92
+ content = (f'[Question]\n{ques["text"]}\n\n'
93
+ f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
94
+ f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
95
+ f'[System]\n{prompt}\n\n')
96
+ js_list.append({
97
+ 'id': idx+1,
98
+ 'question_id': ques['question_id'],
99
+ 'answer1_id': ans1['answer_id'],
100
+ 'answer2_id': ans2['answer_id'],
101
+ 'category': category})
102
+ idx += 1
103
+ handles.append(get_eval.remote(content, args.max_tokens))
104
+ # To avoid the rate limit set by OpenAI
105
+ time.sleep(NUM_SECONDS_TO_SLEEP)
106
+
107
+ reviews = ray.get(handles)
108
+ for idx, review in enumerate(reviews):
109
+ scores = parse_score(review)
110
+ js_list[idx]['content'] = review
111
+ js_list[idx]['tuple'] = scores
112
+ review_file.write(json.dumps(js_list[idx]) + '\n')
113
+ review_file.close()
llava/eval/eval_gpt_review_bench.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+
5
+ import openai
6
+ import time
7
+
8
+ NUM_SECONDS_TO_SLEEP = 0.5
9
+
10
+
11
+ def get_eval(content: str, max_tokens: int):
12
+ while True:
13
+ try:
14
+ response = openai.ChatCompletion.create(
15
+ model='gpt-4-0314',
16
+ messages=[{
17
+ 'role': 'system',
18
+ 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
19
+ }, {
20
+ 'role': 'user',
21
+ 'content': content,
22
+ }],
23
+ temperature=0.2, # TODO: figure out which temperature is best for evaluation
24
+ max_tokens=max_tokens,
25
+ )
26
+ break
27
+ except openai.error.RateLimitError:
28
+ pass
29
+ except Exception as e:
30
+ print(e)
31
+ time.sleep(NUM_SECONDS_TO_SLEEP)
32
+
33
+ return response['choices'][0]['message']['content']
34
+
35
+
36
+ def parse_score(review):
37
+ try:
38
+ score_pair = review.split('\n')[0]
39
+ score_pair = score_pair.replace(',', ' ')
40
+ sp = score_pair.split(' ')
41
+ if len(sp) == 2:
42
+ return [float(sp[0]), float(sp[1])]
43
+ else:
44
+ print('error', review)
45
+ return [-1, -1]
46
+ except Exception as e:
47
+ print(e)
48
+ print('error', review)
49
+ return [-1, -1]
50
+
51
+
52
+ if __name__ == '__main__':
53
+ parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
54
+ parser.add_argument('-q', '--question')
55
+ parser.add_argument('-c', '--context')
56
+ parser.add_argument('-a', '--answer-list', nargs='+', default=[])
57
+ parser.add_argument('-r', '--rule')
58
+ parser.add_argument('-o', '--output')
59
+ parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
60
+ args = parser.parse_args()
61
+
62
+ f_q = open(os.path.expanduser(args.question))
63
+ f_ans1 = open(os.path.expanduser(args.answer_list[0]))
64
+ f_ans2 = open(os.path.expanduser(args.answer_list[1]))
65
+ rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
66
+
67
+ if os.path.isfile(os.path.expanduser(args.output)):
68
+ cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
69
+ else:
70
+ cur_reviews = []
71
+
72
+ review_file = open(f'{args.output}', 'a')
73
+
74
+ context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
75
+ image_to_context = {context['image']: context for context in context_list}
76
+
77
+ handles = []
78
+ idx = 0
79
+ for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
80
+ ques = json.loads(ques_js)
81
+ ans1 = json.loads(ans1_js)
82
+ ans2 = json.loads(ans2_js)
83
+
84
+ inst = image_to_context[ques['image']]
85
+
86
+ if isinstance(inst['caption'], list):
87
+ cap_str = '\n'.join(inst['caption'])
88
+ else:
89
+ cap_str = inst['caption']
90
+
91
+ category = 'llava_bench_' + json.loads(ques_js)['category']
92
+ if category in rule_dict:
93
+ rule = rule_dict[category]
94
+ else:
95
+ assert False, f"Visual QA category not found in rule file: {category}."
96
+ prompt = rule['prompt']
97
+ role = rule['role']
98
+ content = (f'[Context]\n{cap_str}\n\n'
99
+ f'[Question]\n{ques["text"]}\n\n'
100
+ f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
101
+ f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
102
+ f'[System]\n{prompt}\n\n')
103
+ cur_js = {
104
+ 'id': idx+1,
105
+ 'question_id': ques['question_id'],
106
+ 'answer1_id': ans1.get('answer_id', ans1['question_id']),
107
+ 'answer2_id': ans2.get('answer_id', ans2['answer_id']),
108
+ 'category': category
109
+ }
110
+ if idx >= len(cur_reviews):
111
+ review = get_eval(content, args.max_tokens)
112
+ scores = parse_score(review)
113
+ cur_js['content'] = review
114
+ cur_js['tuple'] = scores
115
+ review_file.write(json.dumps(cur_js) + '\n')
116
+ review_file.flush()
117
+ else:
118
+ print(f'Skipping {idx} as we already have it.')
119
+ idx += 1
120
+ print(idx)
121
+ review_file.close()
llava/eval/eval_gpt_review_visual.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+
5
+ import openai
6
+ import time
7
+
8
+ NUM_SECONDS_TO_SLEEP = 0.5
9
+
10
+
11
+ def get_eval(content: str, max_tokens: int):
12
+ while True:
13
+ try:
14
+ response = openai.ChatCompletion.create(
15
+ model='gpt-4-0314',
16
+ messages=[{
17
+ 'role': 'system',
18
+ 'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
19
+ }, {
20
+ 'role': 'user',
21
+ 'content': content,
22
+ }],
23
+ temperature=0.2, # TODO: figure out which temperature is best for evaluation
24
+ max_tokens=max_tokens,
25
+ )
26
+ break
27
+ except openai.error.RateLimitError:
28
+ pass
29
+ except Exception as e:
30
+ print(e)
31
+ time.sleep(NUM_SECONDS_TO_SLEEP)
32
+
33
+ return response['choices'][0]['message']['content']
34
+
35
+
36
+ def parse_score(review):
37
+ try:
38
+ score_pair = review.split('\n')[0]
39
+ score_pair = score_pair.replace(',', ' ')
40
+ sp = score_pair.split(' ')
41
+ if len(sp) == 2:
42
+ return [float(sp[0]), float(sp[1])]
43
+ else:
44
+ print('error', review)
45
+ return [-1, -1]
46
+ except Exception as e:
47
+ print(e)
48
+ print('error', review)
49
+ return [-1, -1]
50
+
51
+
52
+ if __name__ == '__main__':
53
+ parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
54
+ parser.add_argument('-q', '--question')
55
+ parser.add_argument('-c', '--context')
56
+ parser.add_argument('-a', '--answer-list', nargs='+', default=[])
57
+ parser.add_argument('-r', '--rule')
58
+ parser.add_argument('-o', '--output')
59
+ parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
60
+ args = parser.parse_args()
61
+
62
+ f_q = open(os.path.expanduser(args.question))
63
+ f_ans1 = open(os.path.expanduser(args.answer_list[0]))
64
+ f_ans2 = open(os.path.expanduser(args.answer_list[1]))
65
+ rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
66
+
67
+ if os.path.isfile(os.path.expanduser(args.output)):
68
+ cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
69
+ else:
70
+ cur_reviews = []
71
+
72
+ review_file = open(f'{args.output}', 'a')
73
+
74
+ context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
75
+ image_to_context = {context['image']: context for context in context_list}
76
+
77
+ handles = []
78
+ idx = 0
79
+ for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
80
+ ques = json.loads(ques_js)
81
+ ans1 = json.loads(ans1_js)
82
+ ans2 = json.loads(ans2_js)
83
+
84
+ inst = image_to_context[ques['image']]
85
+ cap_str = '\n'.join(inst['captions'])
86
+ box_str = '\n'.join([f'{instance["category"]}: {instance["bbox"]}' for instance in inst['instances']])
87
+
88
+ category = json.loads(ques_js)['category']
89
+ if category in rule_dict:
90
+ rule = rule_dict[category]
91
+ else:
92
+ assert False, f"Visual QA category not found in rule file: {category}."
93
+ prompt = rule['prompt']
94
+ role = rule['role']
95
+ content = (f'[Context]\n{cap_str}\n\n{box_str}\n\n'
96
+ f'[Question]\n{ques["text"]}\n\n'
97
+ f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
98
+ f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
99
+ f'[System]\n{prompt}\n\n')
100
+ cur_js = {
101
+ 'id': idx+1,
102
+ 'question_id': ques['question_id'],
103
+ 'answer1_id': ans1.get('answer_id', ans1['question_id']),
104
+ 'answer2_id': ans2.get('answer_id', ans2['answer_id']),
105
+ 'category': category
106
+ }
107
+ if idx >= len(cur_reviews):
108
+ review = get_eval(content, args.max_tokens)
109
+ scores = parse_score(review)
110
+ cur_js['content'] = review
111
+ cur_js['tuple'] = scores
112
+ review_file.write(json.dumps(cur_js) + '\n')
113
+ review_file.flush()
114
+ else:
115
+ print(f'Skipping {idx} as we already have it.')
116
+ idx += 1
117
+ print(idx)
118
+ review_file.close()
llava/eval/eval_pope.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+
5
+ def eval_pope(answers, label_file):
6
+ label_list = [json.loads(q)['label'] for q in open(label_file, 'r')]
7
+
8
+ for answer in answers:
9
+ text = answer['text']
10
+
11
+ # Only keep the first sentence
12
+ if text.find('.') != -1:
13
+ text = text.split('.')[0]
14
+
15
+ text = text.replace(',', '')
16
+ words = text.split(' ')
17
+ if 'No' in words or 'not' in words or 'no' in words:
18
+ answer['text'] = 'no'
19
+ else:
20
+ answer['text'] = 'yes'
21
+
22
+ for i in range(len(label_list)):
23
+ if label_list[i] == 'no':
24
+ label_list[i] = 0
25
+ else:
26
+ label_list[i] = 1
27
+
28
+ pred_list = []
29
+ for answer in answers:
30
+ if answer['text'] == 'no':
31
+ pred_list.append(0)
32
+ else:
33
+ pred_list.append(1)
34
+
35
+ pos = 1
36
+ neg = 0
37
+ yes_ratio = pred_list.count(1) / len(pred_list)
38
+
39
+ TP, TN, FP, FN = 0, 0, 0, 0
40
+ for pred, label in zip(pred_list, label_list):
41
+ if pred == pos and label == pos:
42
+ TP += 1
43
+ elif pred == pos and label == neg:
44
+ FP += 1
45
+ elif pred == neg and label == neg:
46
+ TN += 1
47
+ elif pred == neg and label == pos:
48
+ FN += 1
49
+
50
+ print('TP\tFP\tTN\tFN\t')
51
+ print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN))
52
+
53
+ precision = float(TP) / float(TP + FP)
54
+ recall = float(TP) / float(TP + FN)
55
+ f1 = 2*precision*recall / (precision + recall)
56
+ acc = (TP + TN) / (TP + TN + FP + FN)
57
+ print('Accuracy: {}'.format(acc))
58
+ print('Precision: {}'.format(precision))
59
+ print('Recall: {}'.format(recall))
60
+ print('F1 score: {}'.format(f1))
61
+ print('Yes ratio: {}'.format(yes_ratio))
62
+ print('%.3f, %.3f, %.3f, %.3f, %.3f' % (f1, acc, precision, recall, yes_ratio) )
63
+
64
+ if __name__ == "__main__":
65
+ parser = argparse.ArgumentParser()
66
+ parser.add_argument("--annotation-dir", type=str)
67
+ parser.add_argument("--question-file", type=str)
68
+ parser.add_argument("--result-file", type=str)
69
+ args = parser.parse_args()
70
+
71
+ questions = [json.loads(line) for line in open(args.question_file)]
72
+ questions = {question['question_id']: question for question in questions}
73
+ answers = [json.loads(q) for q in open(args.result_file)]
74
+ for file in os.listdir(args.annotation_dir):
75
+ assert file.startswith('coco_pope_')
76
+ assert file.endswith('.json')
77
+ category = file[10:-5]
78
+ cur_answers = [x for x in answers if questions[x['question_id']]['category'] == category]
79
+ print('Category: {}, # samples: {}'.format(category, len(cur_answers)))
80
+ eval_pope(cur_answers, os.path.join(args.annotation_dir, file))
81
+ print("====================================")
llava/eval/eval_science_qa.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+ import re
5
+ import random
6
+
7
+
8
+ def get_args():
9
+ parser = argparse.ArgumentParser()
10
+ parser.add_argument('--base-dir', type=str)
11
+ parser.add_argument('--result-file', type=str)
12
+ parser.add_argument('--output-file', type=str)
13
+ parser.add_argument('--output-result', type=str)
14
+ parser.add_argument('--split', type=str, default='test')
15
+ parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
16
+ return parser.parse_args()
17
+
18
+
19
+ def convert_caps(results):
20
+ fakecaps = []
21
+ for result in results:
22
+ image_id = result['question_id']
23
+ caption = result['text']
24
+ fakecaps.append({"image_id": int(image_id), "caption": caption})
25
+ return fakecaps
26
+
27
+
28
+ def get_pred_idx(prediction, choices, options):
29
+ """
30
+ Get the index (e.g. 2) from the prediction (e.g. 'C')
31
+ """
32
+ if prediction in options[:len(choices)]:
33
+ return options.index(prediction)
34
+ else:
35
+ return random.choice(range(len(choices)))
36
+
37
+
38
+ if __name__ == "__main__":
39
+ args = get_args()
40
+
41
+ base_dir = args.base_dir
42
+ split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
43
+ problems = json.load(open(os.path.join(base_dir, "problems.json")))
44
+ predictions = [json.loads(line) for line in open(args.result_file)]
45
+ predictions = {pred['question_id']: pred for pred in predictions}
46
+ split_problems = {idx: problems[idx] for idx in split_indices}
47
+
48
+ results = {'correct': [], 'incorrect': []}
49
+ sqa_results = {}
50
+ sqa_results['acc'] = None
51
+ sqa_results['correct'] = None
52
+ sqa_results['count'] = None
53
+ sqa_results['results'] = {}
54
+ sqa_results['outputs'] = {}
55
+
56
+ for prob_id, prob in split_problems.items():
57
+ if prob_id not in predictions:
58
+ continue
59
+ pred = predictions[prob_id]
60
+ pred_text = pred['text']
61
+
62
+ pattern = re.compile(r'The answer is ([A-Z]).')
63
+ res = pattern.findall(pred_text)
64
+ if len(res) == 1:
65
+ answer = res[0] # 'A', 'B', ...
66
+ else:
67
+ answer = "FAILED"
68
+
69
+ pred_idx = get_pred_idx(answer, prob['choices'], args.options)
70
+
71
+ analysis = {
72
+ 'question_id': prob_id,
73
+ 'parsed_ans': answer,
74
+ 'ground_truth': args.options[prob['answer']],
75
+ 'question': pred['prompt'],
76
+ 'pred': pred_text,
77
+ 'is_multimodal': '<image>' in pred['prompt'],
78
+ }
79
+
80
+ sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
81
+ sqa_results['outputs'][prob_id] = pred_text
82
+
83
+ if pred_idx == prob['answer']:
84
+ results['correct'].append(analysis)
85
+ else:
86
+ results['incorrect'].append(analysis)
87
+
88
+ correct = len(results['correct'])
89
+ total = len(results['correct']) + len(results['incorrect'])
90
+ print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
91
+
92
+ sqa_results['acc'] = correct / total * 100
93
+ sqa_results['correct'] = correct
94
+ sqa_results['count'] = total
95
+
96
+ with open(args.output_file, 'w') as f:
97
+ json.dump(results, f, indent=2)
98
+ with open(args.output_result, 'w') as f:
99
+ json.dump(sqa_results, f, indent=2)
llava/eval/eval_science_qa_gpt4.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+ import re
5
+ import random
6
+ from collections import defaultdict
7
+
8
+
9
+ def get_args():
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument('--base-dir', type=str)
12
+ parser.add_argument('--gpt4-result', type=str)
13
+ parser.add_argument('--our-result', type=str)
14
+ parser.add_argument('--split', type=str, default='test')
15
+ parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
16
+ return parser.parse_args()
17
+
18
+
19
+ def convert_caps(results):
20
+ fakecaps = []
21
+ for result in results:
22
+ image_id = result['question_id']
23
+ caption = result['text']
24
+ fakecaps.append({"image_id": int(image_id), "caption": caption})
25
+ return fakecaps
26
+
27
+
28
+ def get_pred_idx(prediction, choices, options):
29
+ """
30
+ Get the index (e.g. 2) from the prediction (e.g. 'C')
31
+ """
32
+ if prediction in options[:len(choices)]:
33
+ return options.index(prediction)
34
+ else:
35
+ return random.choice(range(len(choices)))
36
+
37
+
38
+ if __name__ == "__main__":
39
+ args = get_args()
40
+
41
+ base_dir = args.base_dir
42
+ split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
43
+ problems = json.load(open(os.path.join(base_dir, "problems.json")))
44
+ our_predictions = [json.loads(line) for line in open(args.our_result)]
45
+ our_predictions = {pred['question_id']: pred for pred in our_predictions}
46
+ split_problems = {idx: problems[idx] for idx in split_indices}
47
+
48
+ gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
49
+
50
+ results = defaultdict(lambda: 0)
51
+
52
+ for prob_id, prob in split_problems.items():
53
+ if prob_id not in our_predictions:
54
+ continue
55
+ if prob_id not in gpt4_predictions:
56
+ continue
57
+ our_pred = our_predictions[prob_id]['text']
58
+ gpt4_pred = gpt4_predictions[prob_id]
59
+
60
+ pattern = re.compile(r'The answer is ([A-Z]).')
61
+ our_res = pattern.findall(our_pred)
62
+ if len(our_res) == 1:
63
+ our_answer = our_res[0] # 'A', 'B', ...
64
+ else:
65
+ our_answer = "FAILED"
66
+ gpt4_res = pattern.findall(gpt4_pred)
67
+ if len(gpt4_res) == 1:
68
+ gpt4_answer = gpt4_res[0] # 'A', 'B', ...
69
+ else:
70
+ gpt4_answer = "FAILED"
71
+
72
+ our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
73
+ gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
74
+
75
+ if gpt4_answer == 'FAILED':
76
+ results['gpt4_failed'] += 1
77
+ # continue
78
+ gpt4_pred_idx = our_pred_idx
79
+ # if our_pred_idx != prob['answer']:
80
+ # print(our_predictions[prob_id]['prompt'])
81
+ # print('-----------------')
82
+ # print(f'LECTURE: {prob["lecture"]}')
83
+ # print(f'SOLUTION: {prob["solution"]}')
84
+ # print('=====================')
85
+ else:
86
+ # continue
87
+ pass
88
+ # gpt4_pred_idx = our_pred_idx
89
+
90
+ if gpt4_pred_idx == prob['answer']:
91
+ results['correct'] += 1
92
+ else:
93
+ results['incorrect'] += 1
94
+
95
+
96
+ if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
97
+ results['correct_upperbound'] += 1
98
+
99
+ correct = results['correct']
100
+ total = results['correct'] + results['incorrect']
101
+ print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
102
+ print(f'Total: {total}, Correct (upper): {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
103
+ print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
104
+
llava/eval/eval_science_qa_gpt4_requery.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+ import re
5
+ import random
6
+ from collections import defaultdict
7
+
8
+
9
+ def get_args():
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument('--base-dir', type=str)
12
+ parser.add_argument('--gpt4-result', type=str)
13
+ parser.add_argument('--requery-result', type=str)
14
+ parser.add_argument('--our-result', type=str)
15
+ parser.add_argument('--output-result', type=str)
16
+ parser.add_argument('--split', type=str, default='test')
17
+ parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
18
+ return parser.parse_args()
19
+
20
+
21
+ def convert_caps(results):
22
+ fakecaps = []
23
+ for result in results:
24
+ image_id = result['question_id']
25
+ caption = result['text']
26
+ fakecaps.append({"image_id": int(image_id), "caption": caption})
27
+ return fakecaps
28
+
29
+
30
+ def get_pred_idx(prediction, choices, options):
31
+ """
32
+ Get the index (e.g. 2) from the prediction (e.g. 'C')
33
+ """
34
+ if prediction in options[:len(choices)]:
35
+ return options.index(prediction)
36
+ else:
37
+ return random.choice(range(len(choices)))
38
+
39
+
40
+ if __name__ == "__main__":
41
+ args = get_args()
42
+
43
+ base_dir = args.base_dir
44
+ split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
45
+ problems = json.load(open(os.path.join(base_dir, "problems.json")))
46
+ our_predictions = [json.loads(line) for line in open(args.our_result)]
47
+ our_predictions = {pred['question_id']: pred for pred in our_predictions}
48
+ split_problems = {idx: problems[idx] for idx in split_indices}
49
+
50
+ requery_predictions = [json.loads(line) for line in open(args.requery_result)]
51
+ requery_predictions = {pred['question_id']: pred for pred in requery_predictions}
52
+
53
+ gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
54
+
55
+ results = defaultdict(lambda: 0)
56
+
57
+ sqa_results = {}
58
+ sqa_results['acc'] = None
59
+ sqa_results['correct'] = None
60
+ sqa_results['count'] = None
61
+ sqa_results['results'] = {}
62
+ sqa_results['outputs'] = {}
63
+
64
+ for prob_id, prob in split_problems.items():
65
+ if prob_id not in our_predictions:
66
+ assert False
67
+ if prob_id not in gpt4_predictions:
68
+ assert False
69
+ our_pred = our_predictions[prob_id]['text']
70
+ gpt4_pred = gpt4_predictions[prob_id]
71
+ if prob_id not in requery_predictions:
72
+ results['missing_requery'] += 1
73
+ requery_pred = "MISSING"
74
+ else:
75
+ requery_pred = requery_predictions[prob_id]['text']
76
+
77
+ pattern = re.compile(r'The answer is ([A-Z]).')
78
+ our_res = pattern.findall(our_pred)
79
+ if len(our_res) == 1:
80
+ our_answer = our_res[0] # 'A', 'B', ...
81
+ else:
82
+ our_answer = "FAILED"
83
+
84
+ requery_res = pattern.findall(requery_pred)
85
+ if len(requery_res) == 1:
86
+ requery_answer = requery_res[0] # 'A', 'B', ...
87
+ else:
88
+ requery_answer = "FAILED"
89
+
90
+ gpt4_res = pattern.findall(gpt4_pred)
91
+ if len(gpt4_res) == 1:
92
+ gpt4_answer = gpt4_res[0] # 'A', 'B', ...
93
+ else:
94
+ gpt4_answer = "FAILED"
95
+
96
+ our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
97
+ gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
98
+ requery_pred_idx = get_pred_idx(requery_answer, prob['choices'], args.options)
99
+
100
+ results['total'] += 1
101
+
102
+ if gpt4_answer == 'FAILED':
103
+ results['gpt4_failed'] += 1
104
+ if gpt4_pred_idx == prob['answer']:
105
+ results['gpt4_correct'] += 1
106
+ if our_pred_idx == prob['answer']:
107
+ results['gpt4_ourvisual_correct'] += 1
108
+ elif gpt4_pred_idx == prob['answer']:
109
+ results['gpt4_correct'] += 1
110
+ results['gpt4_ourvisual_correct'] += 1
111
+
112
+ if our_pred_idx == prob['answer']:
113
+ results['our_correct'] += 1
114
+
115
+ if requery_answer == 'FAILED':
116
+ sqa_results['results'][prob_id] = our_pred_idx
117
+ if our_pred_idx == prob['answer']:
118
+ results['requery_correct'] += 1
119
+ else:
120
+ sqa_results['results'][prob_id] = requery_pred_idx
121
+ if requery_pred_idx == prob['answer']:
122
+ results['requery_correct'] += 1
123
+ else:
124
+ print(f"""
125
+ Question ({args.options[prob['answer']]}): {our_predictions[prob_id]['prompt']}
126
+ Our ({our_answer}): {our_pred}
127
+ GPT-4 ({gpt4_answer}): {gpt4_pred}
128
+ Requery ({requery_answer}): {requery_pred}
129
+ print("=====================================")
130
+ """)
131
+
132
+ if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
133
+ results['correct_upperbound'] += 1
134
+
135
+ total = results['total']
136
+ print(f'Total: {total}, Our-Correct: {results["our_correct"]}, Accuracy: {results["our_correct"] / total * 100:.2f}%')
137
+ print(f'Total: {total}, GPT-4-Correct: {results["gpt4_correct"]}, Accuracy: {results["gpt4_correct"] / total * 100:.2f}%')
138
+ print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
139
+ print(f'Total: {total}, GPT-4-OursVisual-Correct: {results["gpt4_ourvisual_correct"]}, Accuracy: {results["gpt4_ourvisual_correct"] / total * 100:.2f}%')
140
+ print(f'Total: {total}, Requery-Correct: {results["requery_correct"]}, Accuracy: {results["requery_correct"] / total * 100:.2f}%')
141
+ print(f'Total: {total}, Correct upper: {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
142
+
143
+ sqa_results['acc'] = results["requery_correct"] / total * 100
144
+ sqa_results['correct'] = results["requery_correct"]
145
+ sqa_results['count'] = total
146
+
147
+ with open(args.output_result, 'w') as f:
148
+ json.dump(sqa_results, f, indent=2)
149
+
llava/eval/eval_textvqa.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import json
4
+ import re
5
+
6
+ from llava.eval.m4c_evaluator import TextVQAAccuracyEvaluator
7
+
8
+
9
+ def get_args():
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument('--annotation-file', type=str)
12
+ parser.add_argument('--result-file', type=str)
13
+ parser.add_argument('--result-dir', type=str)
14
+ return parser.parse_args()
15
+
16
+
17
+ def prompt_processor(prompt):
18
+ if prompt.startswith('OCR tokens: '):
19
+ pattern = r"Question: (.*?) Short answer:"
20
+ match = re.search(pattern, prompt, re.DOTALL)
21
+ question = match.group(1)
22
+ elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3:
23
+ if prompt.startswith('Reference OCR token:'):
24
+ question = prompt.split('\n')[1]
25
+ else:
26
+ question = prompt.split('\n')[0]
27
+ elif len(prompt.split('\n')) == 2:
28
+ question = prompt.split('\n')[0]
29
+ else:
30
+ assert False
31
+
32
+ return question.lower()
33
+
34
+
35
+ def eval_single(annotation_file, result_file):
36
+ experiment_name = os.path.splitext(os.path.basename(result_file))[0]
37
+ print(experiment_name)
38
+ annotations = json.load(open(annotation_file))['data']
39
+ annotations = {(annotation['image_id'], annotation['question'].lower()): annotation for annotation in annotations}
40
+ results = [json.loads(line) for line in open(result_file)]
41
+
42
+ pred_list = []
43
+ for result in results:
44
+ annotation = annotations[(result['question_id'], prompt_processor(result['prompt']))]
45
+ pred_list.append({
46
+ "pred_answer": result['text'],
47
+ "gt_answers": annotation['answers'],
48
+ })
49
+
50
+ evaluator = TextVQAAccuracyEvaluator()
51
+ print('Samples: {}\nAccuracy: {:.2f}%\n'.format(len(pred_list), 100. * evaluator.eval_pred_list(pred_list)))
52
+
53
+
54
+ if __name__ == "__main__":
55
+ args = get_args()
56
+
57
+ if args.result_file is not None:
58
+ eval_single(args.annotation_file, args.result_file)
59
+
60
+ if args.result_dir is not None:
61
+ for result_file in sorted(os.listdir(args.result_dir)):
62
+ if not result_file.endswith('.jsonl'):
63
+ print(f'Skipping {result_file}')
64
+ continue
65
+ eval_single(args.annotation_file, os.path.join(args.result_dir, result_file))
llava/eval/generate_webpage_data_from_table.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generate json file for webpage."""
2
+ import json
3
+ import os
4
+ import re
5
+
6
+ # models = ['llama', 'alpaca', 'gpt35', 'bard']
7
+ models = ['vicuna']
8
+
9
+
10
+ def read_jsonl(path: str, key: str=None):
11
+ data = []
12
+ with open(os.path.expanduser(path)) as f:
13
+ for line in f:
14
+ if not line:
15
+ continue
16
+ data.append(json.loads(line))
17
+ if key is not None:
18
+ data.sort(key=lambda x: x[key])
19
+ data = {item[key]: item for item in data}
20
+ return data
21
+
22
+
23
+ def trim_hanging_lines(s: str, n: int) -> str:
24
+ s = s.strip()
25
+ for _ in range(n):
26
+ s = s.split('\n', 1)[1].strip()
27
+ return s
28
+
29
+
30
+ if __name__ == '__main__':
31
+ questions = read_jsonl('table/question.jsonl', key='question_id')
32
+
33
+ # alpaca_answers = read_jsonl('table/answer/answer_alpaca-13b.jsonl', key='question_id')
34
+ # bard_answers = read_jsonl('table/answer/answer_bard.jsonl', key='question_id')
35
+ # gpt35_answers = read_jsonl('table/answer/answer_gpt35.jsonl', key='question_id')
36
+ # llama_answers = read_jsonl('table/answer/answer_llama-13b.jsonl', key='question_id')
37
+ vicuna_answers = read_jsonl('table/answer/answer_vicuna-13b.jsonl', key='question_id')
38
+ ours_answers = read_jsonl('table/results/llama-13b-hf-alpaca.jsonl', key='question_id')
39
+
40
+ review_vicuna = read_jsonl('table/review/review_vicuna-13b_llama-13b-hf-alpaca.jsonl', key='question_id')
41
+ # review_alpaca = read_jsonl('table/review/review_alpaca-13b_vicuna-13b.jsonl', key='question_id')
42
+ # review_bard = read_jsonl('table/review/review_bard_vicuna-13b.jsonl', key='question_id')
43
+ # review_gpt35 = read_jsonl('table/review/review_gpt35_vicuna-13b.jsonl', key='question_id')
44
+ # review_llama = read_jsonl('table/review/review_llama-13b_vicuna-13b.jsonl', key='question_id')
45
+
46
+ records = []
47
+ for qid in questions.keys():
48
+ r = {
49
+ 'id': qid,
50
+ 'category': questions[qid]['category'],
51
+ 'question': questions[qid]['text'],
52
+ 'answers': {
53
+ # 'alpaca': alpaca_answers[qid]['text'],
54
+ # 'llama': llama_answers[qid]['text'],
55
+ # 'bard': bard_answers[qid]['text'],
56
+ # 'gpt35': gpt35_answers[qid]['text'],
57
+ 'vicuna': vicuna_answers[qid]['text'],
58
+ 'ours': ours_answers[qid]['text'],
59
+ },
60
+ 'evaluations': {
61
+ # 'alpaca': review_alpaca[qid]['text'],
62
+ # 'llama': review_llama[qid]['text'],
63
+ # 'bard': review_bard[qid]['text'],
64
+ 'vicuna': review_vicuna[qid]['content'],
65
+ # 'gpt35': review_gpt35[qid]['text'],
66
+ },
67
+ 'scores': {
68
+ 'vicuna': review_vicuna[qid]['tuple'],
69
+ # 'alpaca': review_alpaca[qid]['score'],
70
+ # 'llama': review_llama[qid]['score'],
71
+ # 'bard': review_bard[qid]['score'],
72
+ # 'gpt35': review_gpt35[qid]['score'],
73
+ },
74
+ }
75
+
76
+ # cleanup data
77
+ cleaned_evals = {}
78
+ for k, v in r['evaluations'].items():
79
+ v = v.strip()
80
+ lines = v.split('\n')
81
+ # trim the first line if it's a pair of numbers
82
+ if re.match(r'\d+[, ]+\d+', lines[0]):
83
+ lines = lines[1:]
84
+ v = '\n'.join(lines)
85
+ cleaned_evals[k] = v.replace('Assistant 1', "**Assistant 1**").replace('Assistant 2', '**Assistant 2**')
86
+
87
+ r['evaluations'] = cleaned_evals
88
+ records.append(r)
89
+
90
+ # Reorder the records, this is optional
91
+ for r in records:
92
+ if r['id'] <= 20:
93
+ r['id'] += 60
94
+ else:
95
+ r['id'] -= 20
96
+ for r in records:
97
+ if r['id'] <= 50:
98
+ r['id'] += 10
99
+ elif 50 < r['id'] <= 60:
100
+ r['id'] -= 50
101
+ for r in records:
102
+ if r['id'] == 7:
103
+ r['id'] = 1
104
+ elif r['id'] < 7:
105
+ r['id'] += 1
106
+
107
+ records.sort(key=lambda x: x['id'])
108
+
109
+ # Write to file
110
+ with open('webpage/data.json', 'w') as f:
111
+ json.dump({'questions': records, 'models': models}, f, indent=2)
llava/eval/m4c_evaluator.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ import re
3
+
4
+ from tqdm import tqdm
5
+
6
+
7
+ class EvalAIAnswerProcessor:
8
+ """
9
+ Processes an answer similar to Eval AI
10
+ copied from
11
+ https://github.com/facebookresearch/mmf/blob/c46b3b3391275b4181567db80943473a89ab98ab/pythia/tasks/processors.py#L897
12
+ """
13
+
14
+ CONTRACTIONS = {
15
+ "aint": "ain't",
16
+ "arent": "aren't",
17
+ "cant": "can't",
18
+ "couldve": "could've",
19
+ "couldnt": "couldn't",
20
+ "couldn'tve": "couldn't've",
21
+ "couldnt've": "couldn't've",
22
+ "didnt": "didn't",
23
+ "doesnt": "doesn't",
24
+ "dont": "don't",
25
+ "hadnt": "hadn't",
26
+ "hadnt've": "hadn't've",
27
+ "hadn'tve": "hadn't've",
28
+ "hasnt": "hasn't",
29
+ "havent": "haven't",
30
+ "hed": "he'd",
31
+ "hed've": "he'd've",
32
+ "he'dve": "he'd've",
33
+ "hes": "he's",
34
+ "howd": "how'd",
35
+ "howll": "how'll",
36
+ "hows": "how's",
37
+ "Id've": "I'd've",
38
+ "I'dve": "I'd've",
39
+ "Im": "I'm",
40
+ "Ive": "I've",
41
+ "isnt": "isn't",
42
+ "itd": "it'd",
43
+ "itd've": "it'd've",
44
+ "it'dve": "it'd've",
45
+ "itll": "it'll",
46
+ "let's": "let's",
47
+ "maam": "ma'am",
48
+ "mightnt": "mightn't",
49
+ "mightnt've": "mightn't've",
50
+ "mightn'tve": "mightn't've",
51
+ "mightve": "might've",
52
+ "mustnt": "mustn't",
53
+ "mustve": "must've",
54
+ "neednt": "needn't",
55
+ "notve": "not've",
56
+ "oclock": "o'clock",
57
+ "oughtnt": "oughtn't",
58
+ "ow's'at": "'ow's'at",
59
+ "'ows'at": "'ow's'at",
60
+ "'ow'sat": "'ow's'at",
61
+ "shant": "shan't",
62
+ "shed've": "she'd've",
63
+ "she'dve": "she'd've",
64
+ "she's": "she's",
65
+ "shouldve": "should've",
66
+ "shouldnt": "shouldn't",
67
+ "shouldnt've": "shouldn't've",
68
+ "shouldn'tve": "shouldn't've",
69
+ "somebody'd": "somebodyd",
70
+ "somebodyd've": "somebody'd've",
71
+ "somebody'dve": "somebody'd've",
72
+ "somebodyll": "somebody'll",
73
+ "somebodys": "somebody's",
74
+ "someoned": "someone'd",
75
+ "someoned've": "someone'd've",
76
+ "someone'dve": "someone'd've",
77
+ "someonell": "someone'll",
78
+ "someones": "someone's",
79
+ "somethingd": "something'd",
80
+ "somethingd've": "something'd've",
81
+ "something'dve": "something'd've",
82
+ "somethingll": "something'll",
83
+ "thats": "that's",
84
+ "thered": "there'd",
85
+ "thered've": "there'd've",
86
+ "there'dve": "there'd've",
87
+ "therere": "there're",
88
+ "theres": "there's",
89
+ "theyd": "they'd",
90
+ "theyd've": "they'd've",
91
+ "they'dve": "they'd've",
92
+ "theyll": "they'll",
93
+ "theyre": "they're",
94
+ "theyve": "they've",
95
+ "twas": "'twas",
96
+ "wasnt": "wasn't",
97
+ "wed've": "we'd've",
98
+ "we'dve": "we'd've",
99
+ "weve": "we've",
100
+ "werent": "weren't",
101
+ "whatll": "what'll",
102
+ "whatre": "what're",
103
+ "whats": "what's",
104
+ "whatve": "what've",
105
+ "whens": "when's",
106
+ "whered": "where'd",
107
+ "wheres": "where's",
108
+ "whereve": "where've",
109
+ "whod": "who'd",
110
+ "whod've": "who'd've",
111
+ "who'dve": "who'd've",
112
+ "wholl": "who'll",
113
+ "whos": "who's",
114
+ "whove": "who've",
115
+ "whyll": "why'll",
116
+ "whyre": "why're",
117
+ "whys": "why's",
118
+ "wont": "won't",
119
+ "wouldve": "would've",
120
+ "wouldnt": "wouldn't",
121
+ "wouldnt've": "wouldn't've",
122
+ "wouldn'tve": "wouldn't've",
123
+ "yall": "y'all",
124
+ "yall'll": "y'all'll",
125
+ "y'allll": "y'all'll",
126
+ "yall'd've": "y'all'd've",
127
+ "y'alld've": "y'all'd've",
128
+ "y'all'dve": "y'all'd've",
129
+ "youd": "you'd",
130
+ "youd've": "you'd've",
131
+ "you'dve": "you'd've",
132
+ "youll": "you'll",
133
+ "youre": "you're",
134
+ "youve": "you've",
135
+ }
136
+
137
+ NUMBER_MAP = {
138
+ "none": "0",
139
+ "zero": "0",
140
+ "one": "1",
141
+ "two": "2",
142
+ "three": "3",
143
+ "four": "4",
144
+ "five": "5",
145
+ "six": "6",
146
+ "seven": "7",
147
+ "eight": "8",
148
+ "nine": "9",
149
+ "ten": "10",
150
+ }
151
+ ARTICLES = ["a", "an", "the"]
152
+ PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)")
153
+ COMMA_STRIP = re.compile(r"(?<=\d)(\,)+(?=\d)")
154
+ PUNCTUATIONS = [
155
+ ";",
156
+ r"/",
157
+ "[",
158
+ "]",
159
+ '"',
160
+ "{",
161
+ "}",
162
+ "(",
163
+ ")",
164
+ "=",
165
+ "+",
166
+ "\\",
167
+ "_",
168
+ "-",
169
+ ">",
170
+ "<",
171
+ "@",
172
+ "`",
173
+ ",",
174
+ "?",
175
+ "!",
176
+ ]
177
+
178
+ def __init__(self, *args, **kwargs):
179
+ pass
180
+
181
+ def word_tokenize(self, word):
182
+ word = word.lower()
183
+ word = word.replace(",", "").replace("?", "").replace("'s", " 's")
184
+ return word.strip()
185
+
186
+ def process_punctuation(self, in_text):
187
+ out_text = in_text
188
+ for p in self.PUNCTUATIONS:
189
+ if (p + " " in in_text or " " + p in in_text) or (
190
+ re.search(self.COMMA_STRIP, in_text) is not None
191
+ ):
192
+ out_text = out_text.replace(p, "")
193
+ else:
194
+ out_text = out_text.replace(p, " ")
195
+ out_text = self.PERIOD_STRIP.sub("", out_text, re.UNICODE)
196
+ return out_text
197
+
198
+ def process_digit_article(self, in_text):
199
+ out_text = []
200
+ temp_text = in_text.lower().split()
201
+ for word in temp_text:
202
+ word = self.NUMBER_MAP.setdefault(word, word)
203
+ if word not in self.ARTICLES:
204
+ out_text.append(word)
205
+ else:
206
+ pass
207
+ for word_id, word in enumerate(out_text):
208
+ if word in self.CONTRACTIONS:
209
+ out_text[word_id] = self.CONTRACTIONS[word]
210
+ out_text = " ".join(out_text)
211
+ return out_text
212
+
213
+ def __call__(self, item):
214
+ item = self.word_tokenize(item)
215
+ item = item.replace("\n", " ").replace("\t", " ").strip()
216
+ item = self.process_punctuation(item)
217
+ item = self.process_digit_article(item)
218
+ return item
219
+
220
+
221
+ class TextVQAAccuracyEvaluator:
222
+ def __init__(self):
223
+ self.answer_processor = EvalAIAnswerProcessor()
224
+
225
+ def _compute_answer_scores(self, raw_answers):
226
+ """
227
+ compute the accuracy (soft score) of human answers
228
+ """
229
+ answers = [self.answer_processor(a) for a in raw_answers]
230
+ assert len(answers) == 10
231
+ gt_answers = list(enumerate(answers))
232
+ unique_answers = set(answers)
233
+ unique_answer_scores = {}
234
+
235
+ for unique_answer in unique_answers:
236
+ accs = []
237
+ for gt_answer in gt_answers:
238
+ other_answers = [item for item in gt_answers if item != gt_answer]
239
+ matching_answers = [
240
+ item for item in other_answers if item[1] == unique_answer
241
+ ]
242
+ acc = min(1, float(len(matching_answers)) / 3)
243
+ accs.append(acc)
244
+ unique_answer_scores[unique_answer] = sum(accs) / len(accs)
245
+
246
+ return unique_answer_scores
247
+
248
+ def eval_pred_list(self, pred_list):
249
+ pred_scores = []
250
+ for entry in tqdm(pred_list):
251
+ pred_answer = self.answer_processor(entry["pred_answer"])
252
+ unique_answer_scores = self._compute_answer_scores(entry["gt_answers"])
253
+ score = unique_answer_scores.get(pred_answer, 0.0)
254
+ pred_scores.append(score)
255
+
256
+ accuracy = sum(pred_scores) / len(pred_scores)
257
+ return accuracy
258
+
259
+
260
+ class STVQAAccuracyEvaluator:
261
+ def __init__(self):
262
+ self.answer_processor = EvalAIAnswerProcessor()
263
+
264
+ def eval_pred_list(self, pred_list):
265
+ pred_scores = []
266
+ for entry in pred_list:
267
+ pred_answer = self.answer_processor(entry["pred_answer"])
268
+ gts = [self.answer_processor(a) for a in entry["gt_answers"]]
269
+ score = 1.0 if pred_answer in gts else 0.0
270
+ pred_scores.append(score)
271
+
272
+ accuracy = sum(pred_scores) / len(pred_scores)
273
+ return accuracy
274
+
275
+
276
+ class STVQAANLSEvaluator:
277
+ def __init__(self):
278
+ import editdistance # install with `pip install editdistance`
279
+
280
+ self.get_edit_distance = editdistance.eval
281
+
282
+ def get_anls(self, s1, s2):
283
+ s1 = s1.lower().strip()
284
+ s2 = s2.lower().strip()
285
+ iou = 1 - self.get_edit_distance(s1, s2) / max(len(s1), len(s2))
286
+ anls = iou if iou >= 0.5 else 0.0
287
+ return anls
288
+
289
+ def eval_pred_list(self, pred_list):
290
+ pred_scores = []
291
+ for entry in pred_list:
292
+ anls = max(
293
+ self.get_anls(entry["pred_answer"], gt) for gt in entry["gt_answers"]
294
+ )
295
+ pred_scores.append(anls)
296
+
297
+ accuracy = sum(pred_scores) / len(pred_scores)
298
+ return accuracy
299
+
300
+
301
+ class TextCapsBleu4Evaluator:
302
+ def __init__(self):
303
+ # The following script requires Java 1.8.0 and pycocotools installed.
304
+ # The pycocoevalcap can be installed with pip as
305
+ # pip install git+https://github.com/ronghanghu/coco-caption.git@python23
306
+ # Original pycocoevalcap code is at https://github.com/tylin/coco-caption
307
+ # but has no python3 support yet.
308
+ try:
309
+ from pycocoevalcap.bleu.bleu import Bleu
310
+ from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
311
+ except ModuleNotFoundError:
312
+ print(
313
+ "Please install pycocoevalcap module using "
314
+ "pip install git+https://github.com/ronghanghu/coco-caption.git@python23" # noqa
315
+ )
316
+ raise
317
+
318
+ self.tokenizer = PTBTokenizer()
319
+ self.scorer = Bleu(4)
320
+
321
+ def eval_pred_list(self, pred_list):
322
+ # Create reference and hypotheses captions.
323
+ gts = {}
324
+ res = {}
325
+ for idx, entry in enumerate(pred_list):
326
+ gts[idx] = [{"caption": a} for a in entry["gt_answers"]]
327
+ res[idx] = [{"caption": entry["pred_answer"]}]
328
+
329
+ gts = self.tokenizer.tokenize(gts)
330
+ res = self.tokenizer.tokenize(res)
331
+ score, _ = self.scorer.compute_score(gts, res)
332
+
333
+ bleu4 = score[3] # score is (Bleu-1, Bleu-2, Bleu-3, Bleu-4)
334
+ return bleu4
llava/eval/model_captioning.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+ import os
4
+ import json
5
+ from tqdm import tqdm
6
+ import shortuuid
7
+
8
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
9
+ from llava.conversation import conv_templates, SeparatorStyle
10
+ from llava.model.builder import load_pretrained_model
11
+ from llava.utils import disable_torch_init
12
+ from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
13
+ from torch.utils.data import Dataset, DataLoader
14
+
15
+ from PIL import Image
16
+ import math
17
+
18
+
19
+ def split_list(lst, n):
20
+ """Split a list into n (roughly) equal-sized chunks"""
21
+ chunk_size = math.ceil(len(lst) / n) # integer division
22
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
23
+
24
+
25
+ def get_chunk(lst, n, k):
26
+ chunks = split_list(lst, n)
27
+ return chunks[k]
28
+
29
+
30
+ # Custom dataset class
31
+ class CustomDataset(Dataset):
32
+ def __init__(self, questions, image_folder, tokenizer, image_processor, model_config):
33
+ self.questions = questions
34
+ self.image_folder = image_folder
35
+ self.tokenizer = tokenizer
36
+ self.image_processor = image_processor
37
+ self.model_config = model_config
38
+
39
+ def __getitem__(self, index):
40
+ line = self.questions[index]
41
+ image_file = line["image"]
42
+ qs = line["text"]
43
+ if self.model_config.mm_use_im_start_end:
44
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
45
+ else:
46
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
47
+
48
+ conv = conv_templates[args.conv_mode].copy()
49
+ conv.append_message(conv.roles[0], qs)
50
+ conv.append_message(conv.roles[1], None)
51
+ prompt = conv.get_prompt()
52
+
53
+ image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
54
+ image_tensor = process_images([image], self.image_processor, self.model_config)[0]
55
+
56
+ input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
57
+
58
+ return input_ids, image_tensor
59
+
60
+ def __len__(self):
61
+ return len(self.questions)
62
+
63
+
64
+ # DataLoader
65
+ def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
66
+ assert batch_size == 1, "batch_size must be 1"
67
+ dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config)
68
+ data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
69
+ return data_loader
70
+
71
+
72
+ def eval_model(args):
73
+ # Model
74
+ disable_torch_init()
75
+ model_path = os.path.expanduser(args.model_path)
76
+ model_name = get_model_name_from_path(model_path)
77
+ tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
78
+
79
+ questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
80
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
81
+ answers_file = os.path.expanduser(args.answers_file)
82
+ os.makedirs(os.path.dirname(answers_file), exist_ok=True)
83
+ ans_file = open(answers_file, "w")
84
+
85
+ if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
86
+ args.conv_mode = args.conv_mode + '_mmtag'
87
+ print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
88
+
89
+ data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config)
90
+
91
+ for (input_ids, image_tensor), line in tqdm(zip(data_loader, questions), total=len(questions)):
92
+ idx = line["question_id"]
93
+ # cur_prompt = line["text"]
94
+ cur_prompt = "Describe with a short sentence"
95
+
96
+ stop_str = conv_templates[args.conv_mode].sep if conv_templates[args.conv_mode].sep_style != SeparatorStyle.TWO else conv_templates[args.conv_mode].sep2
97
+ input_ids = input_ids.to(device='cuda', non_blocking=True)
98
+
99
+ with torch.inference_mode():
100
+ output_ids = model.generate(
101
+ input_ids,
102
+ images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
103
+ do_sample=True if args.temperature > 0 else False,
104
+ temperature=args.temperature,
105
+ top_p=args.top_p,
106
+ num_beams=args.num_beams,
107
+ max_new_tokens=32,
108
+ use_cache=True)
109
+
110
+ input_token_len = input_ids.shape[1]
111
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
112
+ if n_diff_input_output > 0:
113
+ print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
114
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
115
+ outputs = outputs.strip()
116
+ if outputs.endswith(stop_str):
117
+ outputs = outputs[:-len(stop_str)]
118
+ outputs = outputs.strip()
119
+
120
+ ans_id = shortuuid.uuid()
121
+ ans_file.write(json.dumps({"question_id": idx,
122
+ "prompt": cur_prompt,
123
+ "text": outputs,
124
+ "answer_id": ans_id,
125
+ "model_id": model_name,
126
+ "metadata": {}}) + "\n")
127
+ ans_file.flush()
128
+ ans_file.close()
129
+
130
+ if __name__ == "__main__":
131
+ parser = argparse.ArgumentParser()
132
+ parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
133
+ parser.add_argument("--model-base", type=str, default=None)
134
+ parser.add_argument("--image-folder", type=str, default="")
135
+ parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
136
+ parser.add_argument("--answers-file", type=str, default="answer.jsonl")
137
+ parser.add_argument("--conv-mode", type=str, default="llava_v1")
138
+ parser.add_argument("--num-chunks", type=int, default=1)
139
+ parser.add_argument("--chunk-idx", type=int, default=0)
140
+ parser.add_argument("--temperature", type=float, default=0.2)
141
+ parser.add_argument("--top_p", type=float, default=None)
142
+ parser.add_argument("--num_beams", type=int, default=1)
143
+ args = parser.parse_args()
144
+
145
+ eval_model(args)
llava/eval/model_qa.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
3
+ import torch
4
+ import os
5
+ import json
6
+ from tqdm import tqdm
7
+ import shortuuid
8
+
9
+ from llava.conversation import default_conversation
10
+ from llava.utils import disable_torch_init
11
+
12
+
13
+ # new stopping implementation
14
+ class KeywordsStoppingCriteria(StoppingCriteria):
15
+ def __init__(self, keywords, tokenizer, input_ids):
16
+ self.keywords = keywords
17
+ self.tokenizer = tokenizer
18
+ self.start_len = None
19
+ self.input_ids = input_ids
20
+
21
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
22
+ if self.start_len is None:
23
+ self.start_len = self.input_ids.shape[1]
24
+ else:
25
+ outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
26
+ for keyword in self.keywords:
27
+ if keyword in outputs:
28
+ return True
29
+ return False
30
+
31
+
32
+ @torch.inference_mode()
33
+ def eval_model(model_name, questions_file, answers_file):
34
+ # Model
35
+ disable_torch_init()
36
+ model_name = os.path.expanduser(model_name)
37
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
38
+ model = AutoModelForCausalLM.from_pretrained(model_name,
39
+ torch_dtype=torch.float16).cuda()
40
+
41
+
42
+ ques_file = open(os.path.expanduser(questions_file), "r")
43
+ ans_file = open(os.path.expanduser(answers_file), "w")
44
+ for i, line in enumerate(tqdm(ques_file)):
45
+ idx = json.loads(line)["question_id"]
46
+ qs = json.loads(line)["text"]
47
+ cat = json.loads(line)["category"]
48
+ conv = default_conversation.copy()
49
+ conv.append_message(conv.roles[0], qs)
50
+ prompt = conv.get_prompt()
51
+ inputs = tokenizer([prompt])
52
+ input_ids = torch.as_tensor(inputs.input_ids).cuda()
53
+ stopping_criteria = KeywordsStoppingCriteria([conv.sep], tokenizer, input_ids)
54
+ output_ids = model.generate(
55
+ input_ids,
56
+ do_sample=True,
57
+ use_cache=True,
58
+ temperature=0.7,
59
+ max_new_tokens=1024,
60
+ stopping_criteria=[stopping_criteria])
61
+ outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
62
+ try:
63
+ index = outputs.index(conv.sep, len(prompt))
64
+ except ValueError:
65
+ outputs += conv.sep
66
+ index = outputs.index(conv.sep, len(prompt))
67
+
68
+ outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
69
+ ans_id = shortuuid.uuid()
70
+ ans_file.write(json.dumps({"question_id": idx,
71
+ "text": outputs,
72
+ "answer_id": ans_id,
73
+ "model_id": model_name,
74
+ "metadata": {}}) + "\n")
75
+ ans_file.flush()
76
+ ans_file.close()
77
+
78
+ if __name__ == "__main__":
79
+ parser = argparse.ArgumentParser()
80
+ parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
81
+ parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
82
+ parser.add_argument("--answers-file", type=str, default="answer.jsonl")
83
+ args = parser.parse_args()
84
+
85
+ eval_model(args.model_name, args.question_file, args.answers_file)
llava/eval/model_vqa.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+ import os
4
+ import json
5
+ from tqdm import tqdm
6
+ import shortuuid
7
+
8
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
9
+ from llava.conversation import conv_templates, SeparatorStyle
10
+ from llava.model.builder import load_pretrained_model
11
+ from llava.utils import disable_torch_init
12
+ from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
13
+
14
+ from PIL import Image
15
+ import math
16
+
17
+
18
+ def split_list(lst, n):
19
+ """Split a list into n (roughly) equal-sized chunks"""
20
+ chunk_size = math.ceil(len(lst) / n) # integer division
21
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
22
+
23
+
24
+ def get_chunk(lst, n, k):
25
+ chunks = split_list(lst, n)
26
+ return chunks[k]
27
+
28
+
29
+ def eval_model(args):
30
+ # Model
31
+ disable_torch_init()
32
+ model_path = os.path.expanduser(args.model_path)
33
+ model_name = get_model_name_from_path(model_path)
34
+ tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
35
+
36
+ questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
37
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
38
+ answers_file = os.path.expanduser(args.answers_file)
39
+ os.makedirs(os.path.dirname(answers_file), exist_ok=True)
40
+ ans_file = open(answers_file, "w")
41
+ for line in tqdm(questions):
42
+ idx = line["question_id"]
43
+ image_file = line["image"]
44
+ qs = line["text"]
45
+ cur_prompt = qs
46
+ if model.config.mm_use_im_start_end:
47
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
48
+ else:
49
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
50
+
51
+ conv = conv_templates[args.conv_mode].copy()
52
+ conv.append_message(conv.roles[0], qs)
53
+ conv.append_message(conv.roles[1], None)
54
+ prompt = conv.get_prompt()
55
+
56
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
57
+
58
+ image = Image.open(os.path.join(args.image_folder, image_file))
59
+ image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
60
+
61
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
62
+ keywords = [stop_str]
63
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
64
+
65
+ with torch.inference_mode():
66
+ output_ids = model.generate(
67
+ input_ids,
68
+ images=image_tensor.unsqueeze(0).half().cuda(),
69
+ do_sample=True,
70
+ temperature=args.temperature,
71
+ top_p=args.top_p,
72
+ num_beams=args.num_beams,
73
+ # no_repeat_ngram_size=3,
74
+ max_new_tokens=1024,
75
+ use_cache=True)
76
+
77
+ input_token_len = input_ids.shape[1]
78
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
79
+ if n_diff_input_output > 0:
80
+ print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
81
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
82
+ outputs = outputs.strip()
83
+ if outputs.endswith(stop_str):
84
+ outputs = outputs[:-len(stop_str)]
85
+ outputs = outputs.strip()
86
+
87
+ ans_id = shortuuid.uuid()
88
+ ans_file.write(json.dumps({"question_id": idx,
89
+ "prompt": cur_prompt,
90
+ "text": outputs,
91
+ "answer_id": ans_id,
92
+ "model_id": model_name,
93
+ "metadata": {}}) + "\n")
94
+ ans_file.flush()
95
+ ans_file.close()
96
+
97
+ if __name__ == "__main__":
98
+ parser = argparse.ArgumentParser()
99
+ parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
100
+ parser.add_argument("--model-base", type=str, default=None)
101
+ parser.add_argument("--image-folder", type=str, default="")
102
+ parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
103
+ parser.add_argument("--answers-file", type=str, default="answer.jsonl")
104
+ parser.add_argument("--conv-mode", type=str, default="llava_v1")
105
+ parser.add_argument("--num-chunks", type=int, default=1)
106
+ parser.add_argument("--chunk-idx", type=int, default=0)
107
+ parser.add_argument("--temperature", type=float, default=0.2)
108
+ parser.add_argument("--top_p", type=float, default=None)
109
+ parser.add_argument("--num_beams", type=int, default=1)
110
+ args = parser.parse_args()
111
+
112
+ eval_model(args)
llava/eval/model_vqa_loader.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+ import os
4
+ import json
5
+ from tqdm import tqdm
6
+ import shortuuid
7
+
8
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
9
+ from llava.conversation import conv_templates, SeparatorStyle
10
+ from llava.model.builder import load_pretrained_model
11
+ from llava.utils import disable_torch_init
12
+ from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
13
+ from torch.utils.data import Dataset, DataLoader
14
+
15
+ from PIL import Image
16
+ import math
17
+
18
+
19
+ def split_list(lst, n):
20
+ """Split a list into n (roughly) equal-sized chunks"""
21
+ chunk_size = math.ceil(len(lst) / n) # integer division
22
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
23
+
24
+
25
+ def get_chunk(lst, n, k):
26
+ chunks = split_list(lst, n)
27
+ return chunks[k]
28
+
29
+
30
+ # Custom dataset class
31
+ class CustomDataset(Dataset):
32
+ def __init__(self, questions, image_folder, tokenizer, image_processor, model_config):
33
+ self.questions = questions
34
+ self.image_folder = image_folder
35
+ self.tokenizer = tokenizer
36
+ self.image_processor = image_processor
37
+ self.model_config = model_config
38
+
39
+ def __getitem__(self, index):
40
+ line = self.questions[index]
41
+ image_file = line["image"]
42
+ qs = line["text"]
43
+ if self.model_config.mm_use_im_start_end:
44
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
45
+ else:
46
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
47
+
48
+ conv = conv_templates[args.conv_mode].copy()
49
+ conv.append_message(conv.roles[0], qs)
50
+ conv.append_message(conv.roles[1], None)
51
+ prompt = conv.get_prompt()
52
+
53
+ image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
54
+ image_tensor = process_images([image], self.image_processor, self.model_config)[0]
55
+
56
+ input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
57
+
58
+ return input_ids, image_tensor
59
+
60
+ def __len__(self):
61
+ return len(self.questions)
62
+
63
+
64
+ # DataLoader
65
+ def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
66
+ assert batch_size == 1, "batch_size must be 1"
67
+ dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config)
68
+ data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
69
+ return data_loader
70
+
71
+
72
+ def eval_model(args):
73
+ # Model
74
+ disable_torch_init()
75
+ model_path = os.path.expanduser(args.model_path)
76
+ model_name = get_model_name_from_path(model_path)
77
+ tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
78
+
79
+ questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
80
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
81
+ answers_file = os.path.expanduser(args.answers_file)
82
+ os.makedirs(os.path.dirname(answers_file), exist_ok=True)
83
+ ans_file = open(answers_file, "w")
84
+
85
+ if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
86
+ args.conv_mode = args.conv_mode + '_mmtag'
87
+ print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
88
+
89
+ data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config)
90
+
91
+ for (input_ids, image_tensor), line in tqdm(zip(data_loader, questions), total=len(questions)):
92
+ idx = line["question_id"]
93
+ cur_prompt = line["text"]
94
+
95
+ stop_str = conv_templates[args.conv_mode].sep if conv_templates[args.conv_mode].sep_style != SeparatorStyle.TWO else conv_templates[args.conv_mode].sep2
96
+ input_ids = input_ids.to(device='cuda', non_blocking=True)
97
+
98
+ with torch.inference_mode():
99
+ output_ids = model.generate(
100
+ input_ids,
101
+ images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
102
+ do_sample=True if args.temperature > 0 else False,
103
+ temperature=args.temperature,
104
+ top_p=args.top_p,
105
+ num_beams=args.num_beams,
106
+ max_new_tokens=128,
107
+ # max_length=64,
108
+ use_cache=True)
109
+
110
+ input_token_len = input_ids.shape[1]
111
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
112
+ if n_diff_input_output > 0:
113
+ print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
114
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
115
+ outputs = outputs.strip()
116
+ if outputs.endswith(stop_str):
117
+ outputs = outputs[:-len(stop_str)]
118
+ outputs = outputs.strip()
119
+
120
+ ans_id = shortuuid.uuid()
121
+ ans_file.write(json.dumps({"question_id": idx,
122
+ "prompt": cur_prompt,
123
+ "text": outputs,
124
+ "answer_id": ans_id,
125
+ "model_id": model_name,
126
+ "metadata": {}}) + "\n")
127
+ ans_file.flush()
128
+ ans_file.close()
129
+
130
+ if __name__ == "__main__":
131
+ parser = argparse.ArgumentParser()
132
+ parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
133
+ parser.add_argument("--model-base", type=str, default=None)
134
+ parser.add_argument("--image-folder", type=str, default="")
135
+ parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
136
+ parser.add_argument("--answers-file", type=str, default="answer.jsonl")
137
+ parser.add_argument("--conv-mode", type=str, default="llava_v1")
138
+ parser.add_argument("--num-chunks", type=int, default=1)
139
+ parser.add_argument("--chunk-idx", type=int, default=0)
140
+ parser.add_argument("--temperature", type=float, default=0.2)
141
+ parser.add_argument("--top_p", type=float, default=None)
142
+ parser.add_argument("--num_beams", type=int, default=1)
143
+ args = parser.parse_args()
144
+
145
+ eval_model(args)
llava/eval/model_vqa_mmbench.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+ import os
4
+ import json
5
+ import pandas as pd
6
+ from tqdm import tqdm
7
+ import shortuuid
8
+
9
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
10
+ from llava.conversation import conv_templates, SeparatorStyle
11
+ from llava.model.builder import load_pretrained_model
12
+ from llava.utils import disable_torch_init
13
+ from llava.mm_utils import tokenizer_image_token, process_images, load_image_from_base64, get_model_name_from_path
14
+
15
+ from PIL import Image
16
+ import math
17
+
18
+
19
+ all_options = ['A', 'B', 'C', 'D']
20
+
21
+
22
+ def split_list(lst, n):
23
+ """Split a list into n (roughly) equal-sized chunks"""
24
+ chunk_size = math.ceil(len(lst) / n) # integer division
25
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
26
+
27
+
28
+ def get_chunk(lst, n, k):
29
+ chunks = split_list(lst, n)
30
+ return chunks[k]
31
+
32
+
33
+ def is_none(value):
34
+ if value is None:
35
+ return True
36
+ if type(value) is float and math.isnan(value):
37
+ return True
38
+ if type(value) is str and value.lower() == 'nan':
39
+ return True
40
+ if type(value) is str and value.lower() == 'none':
41
+ return True
42
+ return False
43
+
44
+ def get_options(row, options):
45
+ parsed_options = []
46
+ for option in options:
47
+ option_value = row[option]
48
+ if is_none(option_value):
49
+ break
50
+ parsed_options.append(option_value)
51
+ return parsed_options
52
+
53
+
54
+ def eval_model(args):
55
+ # Model
56
+ disable_torch_init()
57
+ model_path = os.path.expanduser(args.model_path)
58
+ model_name = get_model_name_from_path(model_path)
59
+ tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
60
+
61
+ questions = pd.read_table(os.path.expanduser(args.question_file))
62
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
63
+ answers_file = os.path.expanduser(args.answers_file)
64
+ os.makedirs(os.path.dirname(answers_file), exist_ok=True)
65
+ ans_file = open(answers_file, "w")
66
+
67
+ if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
68
+ args.conv_mode = args.conv_mode + '_mmtag'
69
+ print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
70
+
71
+ for index, row in tqdm(questions.iterrows(), total=len(questions)):
72
+ options = get_options(row, all_options)
73
+ cur_option_char = all_options[:len(options)]
74
+
75
+ if args.all_rounds:
76
+ num_rounds = len(options)
77
+ else:
78
+ num_rounds = 1
79
+
80
+ for round_idx in range(num_rounds):
81
+ idx = row['index']
82
+ question = row['question']
83
+ hint = row['hint']
84
+ image = load_image_from_base64(row['image'])
85
+ if not is_none(hint):
86
+ question = hint + '\n' + question
87
+ for option_char, option in zip(all_options[:len(options)], options):
88
+ question = question + '\n' + option_char + '. ' + option
89
+ qs = cur_prompt = question
90
+ if model.config.mm_use_im_start_end:
91
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
92
+ else:
93
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
94
+
95
+ if args.single_pred_prompt:
96
+ if args.lang == 'cn':
97
+ qs = qs + '\n' + "请直接回答选项字母。"
98
+ else:
99
+ qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
100
+
101
+ conv = conv_templates[args.conv_mode].copy()
102
+ conv.append_message(conv.roles[0], qs)
103
+ conv.append_message(conv.roles[1], None)
104
+ prompt = conv.get_prompt()
105
+
106
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
107
+
108
+ image_tensor = process_images([image], image_processor, model.config)[0]
109
+ # image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
110
+
111
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
112
+
113
+ with torch.inference_mode():
114
+ output_ids = model.generate(
115
+ input_ids,
116
+ images=image_tensor.unsqueeze(0).half().cuda(),
117
+ do_sample=True if args.temperature > 0 else False,
118
+ temperature=args.temperature,
119
+ top_p=args.top_p,
120
+ num_beams=args.num_beams,
121
+ # no_repeat_ngram_size=3,
122
+ max_new_tokens=1024,
123
+ use_cache=True)
124
+
125
+ input_token_len = input_ids.shape[1]
126
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
127
+ if n_diff_input_output > 0:
128
+ print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
129
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
130
+ outputs = outputs.strip()
131
+ if outputs.endswith(stop_str):
132
+ outputs = outputs[:-len(stop_str)]
133
+ outputs = outputs.strip()
134
+
135
+ ans_id = shortuuid.uuid()
136
+ ans_file.write(json.dumps({"question_id": idx,
137
+ "round_id": round_idx,
138
+ "prompt": cur_prompt,
139
+ "text": outputs,
140
+ "options": options,
141
+ "option_char": cur_option_char,
142
+ "answer_id": ans_id,
143
+ "model_id": model_name,
144
+ "metadata": {}}) + "\n")
145
+ ans_file.flush()
146
+
147
+ # rotate options
148
+ options = options[1:] + options[:1]
149
+ cur_option_char = cur_option_char[1:] + cur_option_char[:1]
150
+ ans_file.close()
151
+
152
+ if __name__ == "__main__":
153
+ parser = argparse.ArgumentParser()
154
+ parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
155
+ parser.add_argument("--model-base", type=str, default=None)
156
+ parser.add_argument("--image-folder", type=str, default="")
157
+ parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
158
+ parser.add_argument("--answers-file", type=str, default="answer.jsonl")
159
+ parser.add_argument("--conv-mode", type=str, default="llava_v1")
160
+ parser.add_argument("--num-chunks", type=int, default=1)
161
+ parser.add_argument("--chunk-idx", type=int, default=0)
162
+ parser.add_argument("--temperature", type=float, default=0.2)
163
+ parser.add_argument("--top_p", type=float, default=None)
164
+ parser.add_argument("--num_beams", type=int, default=1)
165
+ parser.add_argument("--all-rounds", action="store_true")
166
+ parser.add_argument("--single-pred-prompt", action="store_true")
167
+ parser.add_argument("--lang", type=str, default="en")
168
+ args = parser.parse_args()
169
+
170
+ eval_model(args)
llava/eval/model_vqa_qbench.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+ from tqdm import tqdm
4
+ import json
5
+
6
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
7
+ from llava.conversation import conv_templates, SeparatorStyle
8
+ from llava.model.builder import load_pretrained_model
9
+ from llava.utils import disable_torch_init
10
+ from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
11
+
12
+ from PIL import Image
13
+
14
+ import requests
15
+ from PIL import Image
16
+ from io import BytesIO
17
+
18
+
19
+ def load_image(image_file):
20
+ if image_file.startswith('http') or image_file.startswith('https'):
21
+ response = requests.get(image_file)
22
+ image = Image.open(BytesIO(response.content)).convert('RGB')
23
+ else:
24
+ image = Image.open(image_file).convert('RGB')
25
+ return image
26
+
27
+
28
+ def eval_model(args):
29
+ # Model
30
+ disable_torch_init()
31
+
32
+ model_name = get_model_name_from_path(args.model_path)
33
+ tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, True)
34
+
35
+
36
+
37
+
38
+ with open(args.questions_file) as f:
39
+ llvqa_data = json.load(f)
40
+
41
+ for i, llddata in enumerate(tqdm(llvqa_data)):
42
+ filename = llddata["img_path"]
43
+ if args.lang == "en":
44
+ message = llddata["question"] + "\nChoose between one of the options as follows:\n"
45
+ elif args.lang == "zh":
46
+ message = llddata["question"] + "\在下列选项中选择一个:\n"
47
+ else:
48
+ raise NotImplementedError("Q-Bench does not support languages other than English (en) and Chinese (zh) yet. Contact us (https://github.com/VQAssessment/Q-Bench/) to convert Q-Bench into more languages.")
49
+ for choice, ans in zip(["A.", "B.", "C.", "D."], llddata["candidates"]):
50
+ message += f"{choice} {ans}\n"
51
+ qs = message
52
+
53
+ if model.config.mm_use_im_start_end:
54
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
55
+ else:
56
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
57
+
58
+ if 'llama-2' in model_name.lower():
59
+ conv_mode = "llava_llama_2"
60
+ elif "v1" in model_name.lower():
61
+ conv_mode = "llava_v1"
62
+ elif "mpt" in model_name.lower():
63
+ conv_mode = "mpt"
64
+ else:
65
+ conv_mode = "llava_v0"
66
+
67
+ if args.conv_mode is not None and conv_mode != args.conv_mode:
68
+ print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
69
+ else:
70
+ args.conv_mode = conv_mode
71
+
72
+ conv = conv_templates[args.conv_mode].copy()
73
+ conv.append_message(conv.roles[0], qs)
74
+ conv.append_message(conv.roles[1], None)
75
+ prompt = conv.get_prompt()
76
+
77
+ image = load_image(args.image_folder + filename)
78
+ image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda()
79
+
80
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
81
+
82
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
83
+ keywords = [stop_str]
84
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
85
+
86
+
87
+ with torch.inference_mode():
88
+ output_ids = model.generate(
89
+ input_ids,
90
+ images=image_tensor,
91
+ num_beams=1,
92
+ do_sample=False,
93
+ temperature=0,
94
+ max_new_tokens=1024,
95
+ use_cache=True,
96
+ stopping_criteria=[stopping_criteria])
97
+
98
+ input_token_len = input_ids.shape[1]
99
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
100
+ if n_diff_input_output > 0:
101
+ print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
102
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
103
+ outputs = outputs.strip()
104
+ if outputs.endswith(stop_str):
105
+ outputs = outputs[:-len(stop_str)]
106
+ outputs = outputs.strip()
107
+ llddata["response"] = outputs
108
+ with open(args.answers_file, "a") as wf:
109
+ json.dump(llddata, wf)
110
+
111
+ if __name__ == "__main__":
112
+ parser = argparse.ArgumentParser()
113
+ parser.add_argument("--model-path", type=str, default="llava-v1.5")
114
+ parser.add_argument("--model-base", type=str, default=None)
115
+ parser.add_argument("--image-folder", type=str, default="./playground/data/qbench/images_llvisionqa")
116
+ parser.add_argument("--questions-file", type=str, default="./playground/data/qbench/llvisionqa_dev.json")
117
+ parser.add_argument("--answers-file", type=str, default="answer.jsonl")
118
+ parser.add_argument("--conv-mode", type=str, default="llava_v1")
119
+ parser.add_argument("--lang", type=str, default="en")
120
+ args = parser.parse_args()
121
+
122
+ eval_model(args)
llava/eval/model_vqa_science.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+ import os
4
+ import json
5
+ from tqdm import tqdm
6
+ import shortuuid
7
+
8
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
9
+ from llava.conversation import conv_templates, SeparatorStyle
10
+ from llava.model.builder import load_pretrained_model
11
+ from llava.utils import disable_torch_init
12
+ from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
13
+
14
+ from PIL import Image
15
+ import math
16
+
17
+
18
+ def split_list(lst, n):
19
+ """Split a list into n (roughly) equal-sized chunks"""
20
+ chunk_size = math.ceil(len(lst) / n) # integer division
21
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
22
+
23
+
24
+ def get_chunk(lst, n, k):
25
+ chunks = split_list(lst, n)
26
+ return chunks[k]
27
+
28
+
29
+ def eval_model(args):
30
+ # Model
31
+ disable_torch_init()
32
+ model_path = os.path.expanduser(args.model_path)
33
+ model_name = get_model_name_from_path(model_path)
34
+ tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
35
+
36
+ questions = json.load(open(os.path.expanduser(args.question_file), "r"))
37
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
38
+ answers_file = os.path.expanduser(args.answers_file)
39
+ os.makedirs(os.path.dirname(answers_file), exist_ok=True)
40
+ ans_file = open(answers_file, "w")
41
+ for i, line in enumerate(tqdm(questions)):
42
+ idx = line["id"]
43
+ question = line['conversations'][0]
44
+ qs = question['value'].replace('<image>', '').strip()
45
+ cur_prompt = qs
46
+
47
+ if 'image' in line:
48
+ image_file = line["image"]
49
+ image = Image.open(os.path.join(args.image_folder, image_file))
50
+ image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
51
+ images = image_tensor.unsqueeze(0).half().cuda()
52
+ if getattr(model.config, 'mm_use_im_start_end', False):
53
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
54
+ else:
55
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
56
+ cur_prompt = '<image>' + '\n' + cur_prompt
57
+ else:
58
+ images = None
59
+
60
+ conv = conv_templates[args.conv_mode].copy()
61
+ conv.append_message(conv.roles[0], qs)
62
+ conv.append_message(conv.roles[1], None)
63
+ prompt = conv.get_prompt()
64
+
65
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
66
+
67
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
68
+ keywords = [stop_str]
69
+ stopping_criteria = [KeywordsStoppingCriteria(keywords, tokenizer, input_ids)] if conv.version == "v0" else None
70
+
71
+ with torch.inference_mode():
72
+ output_ids = model.generate(
73
+ input_ids,
74
+ images=images,
75
+ do_sample=True,
76
+ temperature=0.2,
77
+ max_new_tokens=1024,
78
+ use_cache=True,
79
+ stopping_criteria=stopping_criteria,
80
+ )
81
+
82
+ input_token_len = input_ids.shape[1]
83
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
84
+ if n_diff_input_output > 0:
85
+ print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
86
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
87
+ outputs = outputs.strip()
88
+ if outputs.endswith(stop_str):
89
+ outputs = outputs[:-len(stop_str)]
90
+ outputs = outputs.strip()
91
+
92
+ # prompt for answer
93
+ if args.answer_prompter:
94
+ outputs_reasoning = outputs
95
+ input_ids = tokenizer_image_token(prompt + outputs_reasoning + ' ###\nANSWER:', tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
96
+
97
+ with torch.inference_mode():
98
+ output_ids = model.generate(
99
+ input_ids,
100
+ images=images,
101
+ do_sample=True,
102
+ temperature=0.2,
103
+ max_new_tokens=64,
104
+ use_cache=True,
105
+ stopping_criteria=[stopping_criteria])
106
+
107
+ input_token_len = input_ids.shape[1]
108
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
109
+ if n_diff_input_output > 0:
110
+ print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
111
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
112
+ outputs = outputs.strip()
113
+ if outputs.endswith(stop_str):
114
+ outputs = outputs[:-len(stop_str)]
115
+ outputs = outputs.strip()
116
+ outputs = outputs_reasoning + '\n The answer is ' + outputs
117
+
118
+ ans_id = shortuuid.uuid()
119
+ ans_file.write(json.dumps({"question_id": idx,
120
+ "prompt": cur_prompt,
121
+ "text": outputs,
122
+ "answer_id": ans_id,
123
+ "model_id": model_name,
124
+ "metadata": {}}) + "\n")
125
+ ans_file.flush()
126
+ ans_file.close()
127
+
128
+ if __name__ == "__main__":
129
+ parser = argparse.ArgumentParser()
130
+ parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
131
+ parser.add_argument("--model-base", type=str, default=None)
132
+ parser.add_argument("--image-folder", type=str, default="")
133
+ parser.add_argument("--question-file", type=str, default="tables/question.json")
134
+ parser.add_argument("--answers-file", type=str, default="answer.jsonl")
135
+ parser.add_argument("--conv-mode", type=str, default="llava_v0")
136
+ parser.add_argument("--num-chunks", type=int, default=1)
137
+ parser.add_argument("--chunk-idx", type=int, default=0)
138
+ parser.add_argument("--answer-prompter", action="store_true")
139
+ args = parser.parse_args()
140
+
141
+ eval_model(args)
llava/eval/qa_baseline_gpt35.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generate answers with GPT-3.5"""
2
+ # Note: you need to be using OpenAI Python v0.27.0 for the code below to work
3
+ import argparse
4
+ import json
5
+ import os
6
+ import time
7
+ import concurrent.futures
8
+
9
+ import openai
10
+ import tqdm
11
+ import shortuuid
12
+
13
+ MODEL = 'gpt-3.5-turbo'
14
+ MODEL_ID = 'gpt-3.5-turbo:20230327'
15
+
16
+ def get_answer(question_id: int, question: str, max_tokens: int):
17
+ ans = {
18
+ 'answer_id': shortuuid.uuid(),
19
+ 'question_id': question_id,
20
+ 'model_id': MODEL_ID,
21
+ }
22
+ for _ in range(3):
23
+ try:
24
+ response = openai.ChatCompletion.create(
25
+ model=MODEL,
26
+ messages=[{
27
+ 'role': 'system',
28
+ 'content': 'You are a helpful assistant.'
29
+ }, {
30
+ 'role': 'user',
31
+ 'content': question,
32
+ }],
33
+ max_tokens=max_tokens,
34
+ )
35
+ ans['text'] = response['choices'][0]['message']['content']
36
+ return ans
37
+ except Exception as e:
38
+ print('[ERROR]', e)
39
+ ans['text'] = '#ERROR#'
40
+ time.sleep(1)
41
+ return ans
42
+
43
+
44
+ if __name__ == '__main__':
45
+ parser = argparse.ArgumentParser(description='ChatGPT answer generation.')
46
+ parser.add_argument('-q', '--question')
47
+ parser.add_argument('-o', '--output')
48
+ parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
49
+ args = parser.parse_args()
50
+
51
+ questions_dict = {}
52
+ with open(os.path.expanduser(args.question)) as f:
53
+ for line in f:
54
+ if not line:
55
+ continue
56
+ q = json.loads(line)
57
+ questions_dict[q['question_id']] = q['text']
58
+
59
+ answers = []
60
+
61
+ with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor:
62
+ futures = []
63
+ for qid, question in questions_dict.items():
64
+ future = executor.submit(get_answer, qid, question, args.max_tokens)
65
+ futures.append(future)
66
+
67
+ for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
68
+ answers.append(future.result())
69
+
70
+ answers.sort(key=lambda x: x['question_id'])
71
+
72
+ with open(os.path.expanduser(args.output), 'w') as f:
73
+ table = [json.dumps(ans) for ans in answers]
74
+ f.write('\n'.join(table))
llava/eval/run_llava.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import torch
3
+
4
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
5
+ from llava.conversation import conv_templates, SeparatorStyle
6
+ from llava.model.builder import load_pretrained_model
7
+ from llava.utils import disable_torch_init
8
+ from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
9
+
10
+ from PIL import Image
11
+
12
+ import requests
13
+ from PIL import Image
14
+ from io import BytesIO
15
+
16
+
17
+ def load_image(image_file):
18
+ if image_file.startswith('http') or image_file.startswith('https'):
19
+ response = requests.get(image_file)
20
+ image = Image.open(BytesIO(response.content)).convert('RGB')
21
+ else:
22
+ image = Image.open(image_file).convert('RGB')
23
+ return image
24
+
25
+
26
+ def eval_model(args):
27
+ # Model
28
+ disable_torch_init()
29
+
30
+ model_name = get_model_name_from_path(args.model_path)
31
+ tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name)
32
+
33
+ qs = args.query
34
+ if model.config.mm_use_im_start_end:
35
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
36
+ else:
37
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
38
+
39
+ if 'llama-2' in model_name.lower():
40
+ conv_mode = "llava_llama_2"
41
+ elif "v1" in model_name.lower():
42
+ conv_mode = "llava_v1"
43
+ elif "mpt" in model_name.lower():
44
+ conv_mode = "mpt"
45
+ else:
46
+ conv_mode = "llava_v0"
47
+
48
+ if args.conv_mode is not None and conv_mode != args.conv_mode:
49
+ print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
50
+ else:
51
+ args.conv_mode = conv_mode
52
+
53
+ conv = conv_templates[args.conv_mode].copy()
54
+ conv.append_message(conv.roles[0], qs)
55
+ conv.append_message(conv.roles[1], None)
56
+ prompt = conv.get_prompt()
57
+
58
+ image = load_image(args.image_file)
59
+ image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda()
60
+
61
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
62
+
63
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
64
+ keywords = [stop_str]
65
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
66
+
67
+ with torch.inference_mode():
68
+ output_ids = model.generate(
69
+ input_ids,
70
+ images=image_tensor,
71
+ do_sample=True,
72
+ temperature=0.2,
73
+ max_new_tokens=1024,
74
+ use_cache=True,
75
+ stopping_criteria=[stopping_criteria])
76
+
77
+ input_token_len = input_ids.shape[1]
78
+ n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
79
+ if n_diff_input_output > 0:
80
+ print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
81
+ outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
82
+ outputs = outputs.strip()
83
+ if outputs.endswith(stop_str):
84
+ outputs = outputs[:-len(stop_str)]
85
+ outputs = outputs.strip()
86
+ print(outputs)
87
+
88
+ if __name__ == "__main__":
89
+ parser = argparse.ArgumentParser()
90
+ parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
91
+ parser.add_argument("--model-base", type=str, default=None)
92
+ parser.add_argument("--image-file", type=str, required=True)
93
+ parser.add_argument("--query", type=str, required=True)
94
+ parser.add_argument("--conv-mode", type=str, default=None)
95
+ args = parser.parse_args()
96
+
97
+ eval_model(args)
llava/eval/summarize_gpt_review.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from collections import defaultdict
4
+
5
+ import numpy as np
6
+
7
+ import argparse
8
+
9
+ def parse_args():
10
+ parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
11
+ parser.add_argument('-d', '--dir', default=None)
12
+ parser.add_argument('-f', '--files', nargs='*', default=None)
13
+ parser.add_argument('-i', '--ignore', nargs='*', default=None)
14
+ return parser.parse_args()
15
+
16
+
17
+ if __name__ == '__main__':
18
+ args = parse_args()
19
+
20
+ if args.ignore is not None:
21
+ args.ignore = [int(x) for x in args.ignore]
22
+
23
+ if args.files is not None and len(args.files) > 0:
24
+ review_files = args.files
25
+ else:
26
+ review_files = [x for x in os.listdir(args.dir) if x.endswith('.jsonl') and (x.startswith('gpt4_text') or x.startswith('reviews_') or x.startswith('review_'))]
27
+
28
+ for review_file in sorted(review_files):
29
+ config = os.path.basename(review_file).replace('gpt4_text_', '').replace('.jsonl', '')
30
+ scores = defaultdict(list)
31
+ print(config)
32
+ with open(os.path.join(args.dir, review_file) if args.dir is not None else review_file) as f:
33
+ for review_str in f:
34
+ review = json.loads(review_str)
35
+ if args.ignore is not None and review['question_id'] in args.ignore:
36
+ continue
37
+ if 'category' in review:
38
+ scores[review['category']].append(review['tuple'])
39
+ scores['all'].append(review['tuple'])
40
+ else:
41
+ if 'tuple' in review:
42
+ scores['all'].append(review['tuple'])
43
+ else:
44
+ scores['all'].append(review['score'])
45
+ for k, v in sorted(scores.items()):
46
+ stats = np.asarray(v).mean(0).tolist()
47
+ stats = [round(x, 3) for x in stats]
48
+ # print(k, stats, round(stats[1]/stats[0]*100, 1))
49
+ print(k, round(stats[1]/stats[0]*100, 1))
50
+ print('=================================')
llava/eval/webpage/figures/alpaca.png ADDED
llava/eval/webpage/figures/bard.jpg ADDED
llava/eval/webpage/figures/chatgpt.svg ADDED
llava/eval/webpage/figures/llama.jpg ADDED
llava/eval/webpage/figures/swords_FILL0_wght300_GRAD0_opsz48.svg ADDED