Spaces:
Sleeping
Sleeping
import streamlit as st | |
st.title("NLP Project- Grammar Corrector") | |
st.write("") | |
st.write("Input your text here!") | |
default_value = "Urveesh and Raj is playing cricket" | |
sent = st.text_area("Text", default_value, height=50) | |
num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=3, value=1, step=1) | |
# Run Model | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import torch | |
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector') | |
model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device) | |
def correct_grammar(input_text, num_return_sequences): | |
batch = tokenizer([input_text], truncation=True, padding='max_length', max_length=len(input_text), return_tensors="pt").to(torch_device) | |
results = model.generate(**batch, max_length=len(input_text), num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5) | |
return results | |
# Prompts | |
results = correct_grammar(sent, num_return_sequences) | |
# Decode generated sequences | |
generated_sequences = [tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True) for generated_sequence in results] | |
# Add "Check Now" button | |
if st.button("Check Now"): | |
st.write("### Results:") | |
# Check correctness and display in green or red | |
for generated_sequence in generated_sequences: | |
is_correct = generated_sequence == sent | |
color = "green" if is_correct else "red" | |
st.warning(f"**Generated Sentence:** {generated_sequence} (Matches original: {is_correct})") | |
# If incorrect, display correct grammar sentence in a box | |
# if not is_correct: | |
# st.warning(f"**Correct Grammar:** {sent}") | |
# Display original input | |
st.write("### Original Input:") | |
st.write(sent) |