Spaces:
Runtime error
Runtime error
Tomatolinn
commited on
Commit
β’
6e06f17
1
Parent(s):
802ae0c
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,63 @@
|
|
1 |
-
|
2 |
-
import random
|
3 |
-
from typing import List, Tuple
|
4 |
|
5 |
-
import aiohttp
|
6 |
import panel as pn
|
7 |
-
|
8 |
-
from transformers import CLIPModel, CLIPProcessor
|
9 |
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
"brand-github": "https://github.com/holoviz/panel",
|
14 |
-
"brand-twitter": "https://twitter.com/Panel_Org",
|
15 |
-
"brand-linkedin": "https://www.linkedin.com/company/panel-org",
|
16 |
-
"message-circle": "https://discourse.holoviz.org/",
|
17 |
-
"brand-discord": "https://discord.gg/AXRHnJU6sP",
|
18 |
-
}
|
19 |
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
processor_name: str, model_name: str
|
32 |
-
) -> Tuple[CLIPProcessor, CLIPModel]:
|
33 |
-
processor = CLIPProcessor.from_pretrained(processor_name)
|
34 |
-
model = CLIPModel.from_pretrained(model_name)
|
35 |
-
return processor, model
|
36 |
-
|
37 |
-
|
38 |
-
async def open_image_url(image_url: str) -> Image:
|
39 |
-
async with aiohttp.ClientSession() as session:
|
40 |
-
async with session.get(image_url) as resp:
|
41 |
-
return Image.open(io.BytesIO(await resp.read()))
|
42 |
-
|
43 |
-
|
44 |
-
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
|
45 |
-
processor, model = load_processor_model(
|
46 |
-
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
|
47 |
)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
)
|
53 |
-
outputs = model(**inputs)
|
54 |
-
logits_per_image = outputs.logits_per_image
|
55 |
-
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
|
56 |
-
return class_likelihoods[0]
|
57 |
-
|
58 |
-
|
59 |
-
async def process_inputs(class_names: List[str], image_url: str):
|
60 |
-
"""
|
61 |
-
High level function that takes in the user inputs and returns the
|
62 |
-
classification results as panel objects.
|
63 |
-
"""
|
64 |
-
try:
|
65 |
-
main.disabled = True
|
66 |
-
if not image_url:
|
67 |
-
yield "##### β οΈ Provide an image URL"
|
68 |
-
return
|
69 |
-
|
70 |
-
yield "##### β Fetching image and running model..."
|
71 |
-
try:
|
72 |
-
pil_img = await open_image_url(image_url)
|
73 |
-
img = pn.pane.Image(pil_img, height=400, align="center")
|
74 |
-
except Exception as e:
|
75 |
-
yield f"##### π Something went wrong, please try a different URL!"
|
76 |
-
return
|
77 |
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
-
|
82 |
-
results = pn.Column("##### π Here are the results!", img)
|
83 |
|
84 |
-
for class_item, class_likelihood in zip(class_items, class_likelihoods):
|
85 |
-
row_label = pn.widgets.StaticText(
|
86 |
-
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
|
87 |
-
)
|
88 |
-
row_bar = pn.indicators.Progress(
|
89 |
-
value=int(class_likelihood * 100),
|
90 |
-
sizing_mode="stretch_width",
|
91 |
-
bar_color="secondary",
|
92 |
-
margin=(0, 10),
|
93 |
-
design=pn.theme.Material,
|
94 |
-
)
|
95 |
-
results.append(pn.Column(row_label, row_bar))
|
96 |
-
yield results
|
97 |
-
finally:
|
98 |
-
main.disabled = False
|
99 |
-
|
100 |
-
|
101 |
-
# create widgets
|
102 |
-
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
value=pn.bind(random_url, randomize_url),
|
107 |
-
)
|
108 |
-
class_names = pn.widgets.TextInput(
|
109 |
-
name="Comma separated class names",
|
110 |
-
placeholder="Enter possible class names, e.g. cat, dog",
|
111 |
-
value="cat, dog, parrot",
|
112 |
-
)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
118 |
)
|
119 |
|
120 |
-
#
|
121 |
-
|
122 |
-
pn.bind(process_inputs, image_url=image_url, class_names=class_names),
|
123 |
-
height=600,
|
124 |
-
)
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
for icon, url in ICON_URLS.items():
|
129 |
-
href_button = pn.widgets.Button(icon=icon, width=35, height=35)
|
130 |
-
href_button.js_on_click(code=f"window.open('{url}')")
|
131 |
-
footer_row.append(href_button)
|
132 |
-
footer_row.append(pn.Spacer())
|
133 |
|
134 |
-
# create
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
title=title,
|
144 |
-
main=main,
|
145 |
-
main_max_width="min(50%, 698px)",
|
146 |
-
header_background="#F08080",
|
147 |
-
).servable(title=title)
|
|
|
1 |
+
# Import panel and vega datasets
|
|
|
|
|
2 |
|
|
|
3 |
import panel as pn
|
4 |
+
import vega_datasets
|
|
|
5 |
|
6 |
+
# Enable Panel extensions
|
7 |
+
pn.extension()
|
8 |
+
maincol = pn.Column()
|
9 |
+
# Define a function to create and return a plot
|
10 |
|
11 |
+
df2_approve = df2[df2['choice'] == 'approve']
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def create_plot(subgroup, date_range, moving_av_window):
|
14 |
|
15 |
+
# Apply any required transformations to the data in pandas
|
16 |
+
filtered_data = df2_approve[df2_approve['subgroup'] == subgroup]
|
17 |
+
start_date, end_date = pd.to_datetime(date_range[0]), pd.to_datetime(date_range[1])
|
18 |
+
filtered_data = filtered_data[(filtered_data['timestamp'] >= start_date) & (filtered_data['timestamp'] <= end_date)]
|
19 |
+
filtered_data['rate_change'] = filtered_data['rate'].rolling(window=moving_av_window).mean()
|
20 |
+
|
21 |
+
# Line chart
|
22 |
+
base_line = alt.Chart(filtered_data).mark_line(color='red', size=2).encode(
|
23 |
+
x='timestamp:T',
|
24 |
+
y=alt.Y('rate_change:Q', scale=alt.Scale(domain=[30, 60]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
+
# Scatter plot with individual polls
|
27 |
+
base_scatter = alt.Chart(filtered_data).mark_point(size=2, opacity=0.7, color="gray").encode(
|
28 |
+
x='timestamp:T',
|
29 |
+
y=alt.Y('rate:Q'),
|
30 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Put them togetehr
|
33 |
+
plot = (base_scatter + base_line)
|
34 |
+
# Return the combined chart
|
35 |
|
36 |
+
return plot
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Create the selection widget
|
40 |
+
subgroup_widget = pn.widgets.Select(name="Select", options=['Adults', 'All polls', 'Voters'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Create the slider for the date range
|
43 |
+
date_slider = pn.widgets.DateRangeSlider(
|
44 |
+
name='Date Range Slider',
|
45 |
+
start = pd.to_datetime('2021-01-26'),
|
46 |
+
end = pd.to_datetime('2023-02-14'),
|
47 |
+
value = (pd.to_datetime('2021-01-26'), pd.to_datetime('2023-02-14'))
|
48 |
)
|
49 |
|
50 |
+
# Create the slider for the moving average window
|
51 |
+
window_widget = pn.widgets.IntSlider(name="Moving average window", value=1, start=1, end=100, step=1)
|
|
|
|
|
|
|
52 |
|
53 |
+
# Bind the widgets to the create_plot function
|
54 |
+
bound_plot=pn.bind(create_plot, subgroup=subgroup_widget, date_range=date_slider, moving_av_window=window_widget)
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Combine everything in a Panel Column to create an app
|
57 |
+
maincol.append(subgroup_widget)
|
58 |
+
maincol.append(date_slider)
|
59 |
+
maincol.append(window_widget)
|
60 |
+
maincol.append(bound_plot)
|
|
|
61 |
|
62 |
+
# set the app to be servable
|
63 |
+
maincol.servable()
|
|
|
|
|
|
|
|
|
|