Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from typing import Any, Dict, Optional
|
| 4 |
+
|
| 5 |
+
from flask import Flask, request, jsonify
|
| 6 |
+
|
| 7 |
+
from openai import OpenAI
|
| 8 |
+
|
| 9 |
+
from langchain_community.vectorstores import Chroma
|
| 10 |
+
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
| 11 |
+
|
| 12 |
+
# ----------------------------
|
| 13 |
+
# Configuration
|
| 14 |
+
# ----------------------------
|
| 15 |
+
CHROMA_DIR = os.getenv("CHROMA_DIR", "./chroma_db")
|
| 16 |
+
EMBEDDING_MODEL_NAME = os.getenv("EMBEDDING_MODEL_NAME", "thenlper/gte-large")
|
| 17 |
+
OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4.1-nano")
|
| 18 |
+
|
| 19 |
+
# Hugging Face Spaces: put your key in "Settings -> Secrets" as OPENAI_API_KEY
|
| 20 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 21 |
+
|
| 22 |
+
if not OPENAI_API_KEY:
|
| 23 |
+
raise RuntimeError(
|
| 24 |
+
"Missing OPENAI_API_KEY environment variable. "
|
| 25 |
+
"In Hugging Face Spaces, add it in Settings -> Secrets."
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
| 29 |
+
|
| 30 |
+
# ----------------------------
|
| 31 |
+
# Prompt + JSON schema (from notebook)
|
| 32 |
+
# ----------------------------
|
| 33 |
+
DEV_PROMPT = """
|
| 34 |
+
You are a Texas Grade 5 Mathematics tutor for kids, and you also support parents and teachers.
|
| 35 |
+
Your tone must be kid-safe, friendly, clear, and encouraging. Keep explanations simple, accurate, and non-judgmental.
|
| 36 |
+
|
| 37 |
+
CRITICAL OUTPUT RULES:
|
| 38 |
+
- Output MUST be valid JSON only (no markdown, no code fences, no extra text).
|
| 39 |
+
- Use double quotes for all JSON keys/strings.
|
| 40 |
+
- Do not include trailing commas.
|
| 41 |
+
- Keep responses safe for kids (no unsafe, hateful, sexual, violent, or scary content).
|
| 42 |
+
|
| 43 |
+
SCOPE RULE:
|
| 44 |
+
- Only answer mathematics (Grade 5 level preferred; you may briefly define advanced terms if asked).
|
| 45 |
+
- If the user asks anything not related to mathematics, respond ONLY with:
|
| 46 |
+
{"type":"Refusal","message":"Sorry, I can't answer questions other than mathematics."}
|
| 47 |
+
|
| 48 |
+
OUTPUT TYPES:
|
| 49 |
+
1) Concept explanation:
|
| 50 |
+
{
|
| 51 |
+
"type": "Concept",
|
| 52 |
+
"message": "Short kid-friendly explanation..."
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
2) Practice questions (MCQ):
|
| 56 |
+
- Create up to 5 questions maximum. If user requests more than 5, generate only 5.
|
| 57 |
+
- Each question MUST have exactly 4 answer choices.
|
| 58 |
+
- The correct answer MUST be one of the 4 choices.
|
| 59 |
+
- Provide the correct answer explicitly using "CorrectOption" (A/B/C/D) and "CorrectAnswer" (exact matching text from Answers).
|
| 60 |
+
- Keep math appropriate and compute accurately. Avoid trick questions.
|
| 61 |
+
|
| 62 |
+
{
|
| 63 |
+
"type": "Questions",
|
| 64 |
+
"message": [
|
| 65 |
+
{
|
| 66 |
+
"Q1": "Question text",
|
| 67 |
+
"Answers": { "A": "Option 1", "B": "Option 2", "C": "Option 3", "D": "Option 4" },
|
| 68 |
+
"CorrectOption": "B",
|
| 69 |
+
"CorrectAnswer": "Option 2"
|
| 70 |
+
}
|
| 71 |
+
]
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
ACCURACY / ANTI-HALLUCINATION RULES:
|
| 75 |
+
- Do the math carefully. Ensure only one correct option unless the user explicitly asks for multiple correct answers.
|
| 76 |
+
- If you detect ambiguity (missing numbers/units), ask ONE clarifying question using:
|
| 77 |
+
{"type":"Concept","message":"I need one detail to answer: ..."}
|
| 78 |
+
(Keep it math-only and kid-safe.)
|
| 79 |
+
|
| 80 |
+
STYLE GUIDELINES:
|
| 81 |
+
- Use simple words and short sentences for kids.
|
| 82 |
+
- For parents/teachers, add a brief note on how to support learning (1–2 sentences).
|
| 83 |
+
- Avoid unrelated topics, brand names, or personal data requests.
|
| 84 |
+
""".strip()
|
| 85 |
+
|
| 86 |
+
JSON_SCHEMA: Dict[str, Any] = {
|
| 87 |
+
"type": "object",
|
| 88 |
+
"additionalProperties": False,
|
| 89 |
+
"required": ["type", "message"],
|
| 90 |
+
"properties": {
|
| 91 |
+
"type": {"type": "string", "enum": ["Concept", "Questions", "Refusal"]},
|
| 92 |
+
"message": {
|
| 93 |
+
"anyOf": [
|
| 94 |
+
{"type": "string"},
|
| 95 |
+
{
|
| 96 |
+
"type": "array",
|
| 97 |
+
"maxItems": 5,
|
| 98 |
+
"items": {
|
| 99 |
+
"type": "object",
|
| 100 |
+
"additionalProperties": False,
|
| 101 |
+
"required": ["Q1", "Answers", "CorrectOption", "CorrectAnswer"],
|
| 102 |
+
"properties": {
|
| 103 |
+
"Q1": {"type": "string"},
|
| 104 |
+
"Answers": {
|
| 105 |
+
"type": "object",
|
| 106 |
+
"additionalProperties": False,
|
| 107 |
+
"required": ["A", "B", "C", "D"],
|
| 108 |
+
"properties": {
|
| 109 |
+
"A": {"type": "string"},
|
| 110 |
+
"B": {"type": "string"},
|
| 111 |
+
"C": {"type": "string"},
|
| 112 |
+
"D": {"type": "string"},
|
| 113 |
+
},
|
| 114 |
+
},
|
| 115 |
+
"CorrectOption": {"type": "string", "enum": ["A", "B", "C", "D"]},
|
| 116 |
+
"CorrectAnswer": {"type": "string"},
|
| 117 |
+
},
|
| 118 |
+
},
|
| 119 |
+
},
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
},
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
# ----------------------------
|
| 126 |
+
# Vector DB + Retriever (loaded once at startup)
|
| 127 |
+
# ----------------------------
|
| 128 |
+
embedding_model = SentenceTransformerEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
| 129 |
+
|
| 130 |
+
vectorstore = Chroma(
|
| 131 |
+
persist_directory=CHROMA_DIR,
|
| 132 |
+
embedding_function=embedding_model,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
retriever = vectorstore.as_retriever(
|
| 136 |
+
search_type="similarity",
|
| 137 |
+
search_kwargs={"k": 3},
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# ----------------------------
|
| 141 |
+
# RAG helpers
|
| 142 |
+
# ----------------------------
|
| 143 |
+
def generate_context_from_input(user_input: str) -> str:
|
| 144 |
+
"""Retrieve relevant chunks from the vector store and return as a single context string."""
|
| 145 |
+
rel_docs = retriever.invoke(user_input)
|
| 146 |
+
context_list = [d.page_content for d in rel_docs]
|
| 147 |
+
return ". ".join(context_list)
|
| 148 |
+
|
| 149 |
+
def get_llm_response(user_input: str, context: str = "") -> str:
|
| 150 |
+
"""Call OpenAI Chat/Responses API and return the model output text (JSON string)."""
|
| 151 |
+
messages = [{"role": "developer", "content": DEV_PROMPT}]
|
| 152 |
+
|
| 153 |
+
if context and context.strip():
|
| 154 |
+
messages.append(
|
| 155 |
+
{
|
| 156 |
+
"role": "developer",
|
| 157 |
+
"content": (
|
| 158 |
+
"Use the following CONTEXT only if it is relevant to the user's request. "
|
| 159 |
+
"Do not invent facts that are not in the context.\n"
|
| 160 |
+
"BEGIN_CONTEXT\n"
|
| 161 |
+
f"{context}\n"
|
| 162 |
+
"END_CONTEXT"
|
| 163 |
+
),
|
| 164 |
+
}
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
messages.append({"role": "user", "content": user_input})
|
| 168 |
+
|
| 169 |
+
resp = client.responses.create(
|
| 170 |
+
model=OPENAI_MODEL,
|
| 171 |
+
input=messages,
|
| 172 |
+
temperature=0.2,
|
| 173 |
+
max_output_tokens=800,
|
| 174 |
+
text={
|
| 175 |
+
"format": {
|
| 176 |
+
"type": "json_schema",
|
| 177 |
+
"name": "grade5_math_response",
|
| 178 |
+
"strict": True,
|
| 179 |
+
"schema": JSON_SCHEMA,
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
)
|
| 183 |
+
return resp.output_text
|
| 184 |
+
|
| 185 |
+
def generate_response_from_rag(user_input: str) -> Dict[str, Any]:
|
| 186 |
+
context = generate_context_from_input(user_input)
|
| 187 |
+
raw = get_llm_response(user_input=user_input, context=context)
|
| 188 |
+
|
| 189 |
+
# Ensure we return valid JSON to the client even if model output is slightly off.
|
| 190 |
+
try:
|
| 191 |
+
return json.loads(raw)
|
| 192 |
+
except Exception:
|
| 193 |
+
return {"type": "Concept", "message": raw}
|
| 194 |
+
|
| 195 |
+
# ----------------------------
|
| 196 |
+
# Flask API
|
| 197 |
+
# ----------------------------
|
| 198 |
+
app = Flask(__name__)
|
| 199 |
+
|
| 200 |
+
@app.get("/")
|
| 201 |
+
def health():
|
| 202 |
+
return jsonify({"status": "ok"})
|
| 203 |
+
|
| 204 |
+
@app.post("/MathQuestion")
|
| 205 |
+
def math_question():
|
| 206 |
+
payload = request.get_json(silent=True) or {}
|
| 207 |
+
query = payload.get("Query") or payload.get("query")
|
| 208 |
+
|
| 209 |
+
if not query or not isinstance(query, str):
|
| 210 |
+
return jsonify({"error": 'Missing required field "Query" (string).'}), 400
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
result = generate_response_from_rag(query.strip())
|
| 214 |
+
return jsonify(result)
|
| 215 |
+
except Exception as e:
|
| 216 |
+
# Avoid leaking secrets; return safe error.
|
| 217 |
+
return jsonify({"error": "Server error while generating response.", "details": str(e)}), 500
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
if __name__ == "__main__":
|
| 221 |
+
# Hugging Face Spaces (Docker) expects port 7860
|
| 222 |
+
port = int(os.getenv("PORT", "7860"))
|
| 223 |
+
app.run(host="0.0.0.0", port=port)
|