|
import gradio as gr
|
|
from pytube import YouTube
|
|
from moviepy.editor import VideoFileClip
|
|
import torch
|
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
model_id = "openai/whisper-tiny"
|
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
|
)
|
|
model.to(device)
|
|
|
|
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
|
pipe = pipeline(
|
|
"automatic-speech-recognition",
|
|
model=model,
|
|
tokenizer=processor.tokenizer,
|
|
feature_extractor=processor.feature_extractor,
|
|
max_new_tokens=128,
|
|
chunk_length_s=15,
|
|
batch_size=16,
|
|
return_timestamps=True,
|
|
torch_dtype=torch_dtype,
|
|
device=device,
|
|
)
|
|
|
|
|
|
def transcribe(url):
|
|
|
|
def get_video(yt_url):
|
|
try:
|
|
video = YouTube(yt_url)
|
|
video.streams.get_by_itag(22).download(filename='video.mp4')
|
|
print('Video succesfully downloaded from Youtube')
|
|
except Exception as e:
|
|
print(f'Failed to download Youtube video \nerror : {e}')
|
|
|
|
def audio_from_video(video_path):
|
|
try:
|
|
video = VideoFileClip(video_path)
|
|
audio = video.audio
|
|
audio.write_audiofile('audio.wav')
|
|
video.close()
|
|
audio.close()
|
|
except Exception as e:
|
|
print(f'Failed to extract audio from video \nerror : {e}')
|
|
|
|
url = url
|
|
video_path = './video.mp4'
|
|
|
|
get_video(url)
|
|
audio_from_video(video_path)
|
|
|
|
|
|
|
|
|
|
audio = 'audio.wav'
|
|
|
|
text_audio = pipe(audio)
|
|
|
|
chunks = text_audio['chunks']
|
|
|
|
chunks_count = len(chunks)
|
|
|
|
chunk_id = []
|
|
timestamps = []
|
|
texts = []
|
|
start_time = []
|
|
end_time = []
|
|
|
|
|
|
for i in range(0, chunks_count):
|
|
chunk_id.append(i)
|
|
texts.append(chunks[i]['text'])
|
|
start_time.append(chunks[i]['timestamp'][0])
|
|
end_time.append(chunks[i]['timestamp'][1])
|
|
|
|
chunk_length = []
|
|
for i in range(0, chunks_count-1):
|
|
chunk_length.append(round(end_time[i] - start_time[i], 3))
|
|
|
|
output = list(zip(chunk_id, chunk_length, texts, start_time, end_time))
|
|
|
|
sample_output_list = []
|
|
for sublist in output:
|
|
chunk_dict = {
|
|
"chunk_id": sublist[0],
|
|
"chunk_length": sublist[1],
|
|
"text": sublist[2],
|
|
"start_time": sublist[3],
|
|
"end_time": sublist[4]
|
|
}
|
|
sample_output_list.append(chunk_dict)
|
|
|
|
return sample_output_list
|
|
|
|
intf = gr.Interface(
|
|
fn=transcribe,
|
|
inputs = ["text"],
|
|
outputs = ["text"]
|
|
)
|
|
|
|
intf.launch() |