sanchit-gandhi HF staff commited on
Commit
d790c0b
1 Parent(s): 66efbc3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -21
app.py CHANGED
@@ -3,11 +3,14 @@ import torch
3
  import gradio as gr
4
  import pytube as pt
5
  from transformers import pipeline
 
 
 
6
 
7
  MODEL_NAME = "openai/whisper-large-v2"
8
  BATCH_SIZE = 8
9
  FILE_LIMIT_MB = 1000
10
- YT_ATTEMPT_LIMIT = 3
11
 
12
  device = 0 if torch.cuda.is_available() else "cpu"
13
 
@@ -19,11 +22,6 @@ pipe = pipeline(
19
  )
20
 
21
 
22
- all_special_ids = pipe.tokenizer.all_special_ids
23
- transcribe_token_id = all_special_ids[-5]
24
- translate_token_id = all_special_ids[-6]
25
-
26
-
27
  def transcribe(microphone, file_upload, task):
28
  warn_output = ""
29
  if (microphone is not None) and (file_upload is not None):
@@ -43,9 +41,7 @@ def transcribe(microphone, file_upload, task):
43
 
44
  file = microphone if microphone is not None else file_upload
45
 
46
- pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
47
-
48
- text = pipe(file, batch_size=BATCH_SIZE)["text"]
49
 
50
  return warn_output + text
51
 
@@ -58,25 +54,46 @@ def _return_yt_html_embed(yt_url):
58
  )
59
  return HTML_str
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  def yt_transcribe(yt_url, task, max_filesize=75.0):
63
  yt = pt.YouTube(yt_url)
64
  html_embed_str = _return_yt_html_embed(yt_url)
65
- for attempt in range(YT_ATTEMPT_LIMIT):
66
- try:
67
- yt = pytube.YouTube(yt_url)
68
- stream = yt.streams.filter(only_audio=True)[0]
69
- break
70
- except KeyError:
71
- if attempt + 1 == YT_ATTEMPT_LIMIT:
72
- raise gr.Error("An error occurred while loading the YouTube video. Please try again.")
73
 
74
- if stream.filesize_mb > max_filesize:
75
- raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.")
 
 
 
76
 
77
- pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
 
78
 
79
- text = pipe("audio.mp3", batch_size=BATCH_SIZE)["text"]
80
 
81
  return html_embed_str, text
82
 
 
3
  import gradio as gr
4
  import pytube as pt
5
  from transformers import pipeline
6
+ from transformers.pipelines.audio_utils import ffmpeg_read
7
+
8
+ import tempfile
9
 
10
  MODEL_NAME = "openai/whisper-large-v2"
11
  BATCH_SIZE = 8
12
  FILE_LIMIT_MB = 1000
13
+ YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
14
 
15
  device = 0 if torch.cuda.is_available() else "cpu"
16
 
 
22
  )
23
 
24
 
 
 
 
 
 
25
  def transcribe(microphone, file_upload, task):
26
  warn_output = ""
27
  if (microphone is not None) and (file_upload is not None):
 
41
 
42
  file = microphone if microphone is not None else file_upload
43
 
44
+ text = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"]
 
 
45
 
46
  return warn_output + text
47
 
 
54
  )
55
  return HTML_str
56
 
57
+ def download_yt_audio(yt_url, filename):
58
+ info_loader = youtube_dl.YoutubeDL()
59
+ try:
60
+ info = info_loader.extract_info(yt_url, download=False)
61
+ except youtube_dl.utils.DownloadError as err:
62
+ raise gr.Error(str(err))
63
+ file_length = info["duration_string"]
64
+ file_h_m_s = file_length.split(":")
65
+ file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
66
+ if len(file_h_m_s) == 1:
67
+ file_h_m_s.insert(0, 0)
68
+ if len(file_h_m_s) == 2:
69
+ file_h_m_s.insert(0, 0)
70
+ file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
71
+ if file_length_s > YT_LENGTH_LIMIT_S:
72
+ yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
73
+ file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
74
+ raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
75
+ ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
76
+ with youtube_dl.YoutubeDL(ydl_opts) as ydl:
77
+ try:
78
+ ydl.download([yt_url])
79
+ except youtube_dl.utils.ExtractorError as err:
80
+ raise gr.Error(str(err))
81
+
82
 
83
  def yt_transcribe(yt_url, task, max_filesize=75.0):
84
  yt = pt.YouTube(yt_url)
85
  html_embed_str = _return_yt_html_embed(yt_url)
 
 
 
 
 
 
 
 
86
 
87
+ with tempfile.TemporaryDirectory() as tmpdirname:
88
+ filepath = os.path.join(tmpdirname, "video.mp4")
89
+ download_yt_audio(yt_url, filepath)
90
+ with open(filepath, "rb") as f:
91
+ inputs = f.read()
92
 
93
+ inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
94
+ inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
95
 
96
+ text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"]
97
 
98
  return html_embed_str, text
99