Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
from flask import Flask, request, jsonify
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import whisper
|
6 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
7 |
+
|
8 |
+
# Load the Whisper model
|
9 |
+
whisper_model = whisper.load_model("base")
|
10 |
+
|
11 |
+
# Load the translation model and tokenizer
|
12 |
+
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
13 |
+
translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
14 |
+
|
15 |
+
def preprocess_audio(audio_path):
|
16 |
+
"""Convert audio to 16kHz mono WAV format."""
|
17 |
+
audio = AudioSegment.from_file(audio_path)
|
18 |
+
audio = audio.set_frame_rate(16000).set_channels(1) # Set to 16kHz and mono
|
19 |
+
processed_path = f"{audio_path}_processed.wav"
|
20 |
+
audio.export(processed_path, format="wav")
|
21 |
+
return processed_path
|
22 |
+
|
23 |
+
def transcribe_audio(audio_path, source_language=None):
|
24 |
+
"""Transcribe audio using Whisper with an optional source language."""
|
25 |
+
options = {"language": source_language} if source_language else {}
|
26 |
+
result = whisper_model.transcribe(audio_path, **options)
|
27 |
+
return result['text']
|
28 |
+
|
29 |
+
def translate_text(text, source_lang="en", target_lang="hi"):
|
30 |
+
"""Translate text using Facebook's M2M100 model."""
|
31 |
+
tokenizer.src_lang = source_lang
|
32 |
+
inputs = tokenizer(text, return_tensors="pt")
|
33 |
+
translated_tokens = translation_model.generate(
|
34 |
+
**inputs,
|
35 |
+
forced_bos_token_id=tokenizer.get_lang_id(target_lang)
|
36 |
+
)
|
37 |
+
return tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
38 |
+
|
39 |
+
def handle_request(audio_base64, source_lang, target_lang):
|
40 |
+
"""Handle audio translation request."""
|
41 |
+
audio_file_path = "temp_audio.wav"
|
42 |
+
# Decode the base64 audio
|
43 |
+
with open(audio_file_path, "wb") as audio_file:
|
44 |
+
audio_file.write(base64.b64decode(audio_base64))
|
45 |
+
|
46 |
+
# Process the audio file
|
47 |
+
processed_audio_file_name = preprocess_audio(audio_file_path)
|
48 |
+
spoken_text = transcribe_audio(processed_audio_file_name, source_lang)
|
49 |
+
translated_text = translate_text(spoken_text, source_lang, target_lang)
|
50 |
+
|
51 |
+
# Clean up temporary files
|
52 |
+
os.remove(processed_audio_file_name)
|
53 |
+
os.remove(audio_file_path)
|
54 |
+
|
55 |
+
return {"transcribed_text": spoken_text, "translated_text": translated_text}
|
56 |
+
|
57 |
+
# Flask for handling external POST requests
|
58 |
+
app = Flask(__name__)
|
59 |
+
|
60 |
+
@app.route('/translate', methods=['POST'])
|
61 |
+
def translate():
|
62 |
+
"""API endpoint for handling audio translation."""
|
63 |
+
data = request.json
|
64 |
+
if 'audio' not in data or 'source_lang' not in data or 'target_lang' not in data:
|
65 |
+
return jsonify({"error": "Invalid request format"}), 400
|
66 |
+
|
67 |
+
audio_base64 = data['audio']
|
68 |
+
source_lang = data['source_lang']
|
69 |
+
target_lang = data['target_lang']
|
70 |
+
|
71 |
+
# Call the handle_request function to process the request
|
72 |
+
response = handle_request(audio_base64, source_lang, target_lang)
|
73 |
+
return jsonify(response)
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
app.run(host='0.0.0.0', port=7860)
|