remove cuda
Browse files- app.py +4 -4
- inference.py +19 -15
- model/crm/model.py +4 -4
app.py
CHANGED
@@ -104,8 +104,8 @@ def gen_image(input_image, seed, scale, step):
|
|
104 |
np_imgs = np.concatenate(stage1_images, 1)
|
105 |
np_xyzs = np.concatenate(stage2_images, 1)
|
106 |
|
107 |
-
glb_path
|
108 |
-
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path
|
109 |
|
110 |
|
111 |
parser = argparse.ArgumentParser()
|
@@ -202,7 +202,7 @@ with gr.Blocks() as demo:
|
|
202 |
interactive=False,
|
203 |
)
|
204 |
gr.Markdown("Note: The GLB model shown here has a darker lighting and enlarged UV seams. Download for correct results.")
|
205 |
-
output_obj = gr.File(interactive=False, label="Output OBJ")
|
206 |
|
207 |
inputs = [
|
208 |
processed_image,
|
@@ -214,7 +214,7 @@ with gr.Blocks() as demo:
|
|
214 |
image_output,
|
215 |
xyz_ouput,
|
216 |
output_model,
|
217 |
-
output_obj,
|
218 |
]
|
219 |
|
220 |
|
|
|
104 |
np_imgs = np.concatenate(stage1_images, 1)
|
105 |
np_xyzs = np.concatenate(stage2_images, 1)
|
106 |
|
107 |
+
glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
|
108 |
+
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path#, obj_path
|
109 |
|
110 |
|
111 |
parser = argparse.ArgumentParser()
|
|
|
202 |
interactive=False,
|
203 |
)
|
204 |
gr.Markdown("Note: The GLB model shown here has a darker lighting and enlarged UV seams. Download for correct results.")
|
205 |
+
# output_obj = gr.File(interactive=False, label="Output OBJ")
|
206 |
|
207 |
inputs = [
|
208 |
processed_image,
|
|
|
214 |
image_output,
|
215 |
xyz_ouput,
|
216 |
output_model,
|
217 |
+
# output_obj,
|
218 |
]
|
219 |
|
220 |
|
inference.py
CHANGED
@@ -37,7 +37,7 @@ def generate3d(model, rgb, ccm, device):
|
|
37 |
triplane = torch.cat([color,xyz],dim=1).to(device)
|
38 |
# 3D visualize
|
39 |
model.eval()
|
40 |
-
|
41 |
|
42 |
if model.denoising == True:
|
43 |
tnew = 20
|
@@ -67,29 +67,33 @@ def generate3d(model, rgb, ccm, device):
|
|
67 |
|
68 |
|
69 |
from kiui.mesh_utils import clean_mesh
|
70 |
-
verts, faces = clean_mesh(data_config['verts'].squeeze().cpu().numpy().astype(np.float32), data_config['faces'].squeeze().cpu().numpy().astype(np.int32), repair = False, remesh=
|
71 |
data_config['verts'] = torch.from_numpy(verts).cuda().contiguous()
|
72 |
data_config['faces'] = torch.from_numpy(faces).cuda().contiguous()
|
73 |
|
74 |
start_time = time.time()
|
75 |
with torch.no_grad():
|
76 |
-
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
77 |
-
model.export_mesh_wt_uv(glctx, data_config, mesh_path_obj, "", device, res=(1024,1024), tri_fea_2=triplane_feature2)
|
78 |
-
|
79 |
-
mesh = Mesh.load(mesh_path_obj+".obj", bound=0.9, front_dir="+z")
|
80 |
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
# mesh_obj2 = trimesh.load(mesh_path_glb+".glb", file_type='glb')
|
84 |
-
# mesh_path_obj2 = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
85 |
-
# mesh_obj2.export(mesh_path_obj2+".obj")
|
86 |
|
87 |
-
with zipfile.ZipFile(mesh_path_obj+'.zip', 'w') as myzip:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
end_time = time.time()
|
93 |
elapsed_time = end_time - start_time
|
94 |
print(f"uv takes {elapsed_time}s")
|
95 |
-
return mesh_path_glb+".
|
|
|
37 |
triplane = torch.cat([color,xyz],dim=1).to(device)
|
38 |
# 3D visualize
|
39 |
model.eval()
|
40 |
+
|
41 |
|
42 |
if model.denoising == True:
|
43 |
tnew = 20
|
|
|
67 |
|
68 |
|
69 |
from kiui.mesh_utils import clean_mesh
|
70 |
+
verts, faces = clean_mesh(data_config['verts'].squeeze().cpu().numpy().astype(np.float32), data_config['faces'].squeeze().cpu().numpy().astype(np.int32), repair = False, remesh=True, remesh_size=0.005, remesh_iters=1)
|
71 |
data_config['verts'] = torch.from_numpy(verts).cuda().contiguous()
|
72 |
data_config['faces'] = torch.from_numpy(faces).cuda().contiguous()
|
73 |
|
74 |
start_time = time.time()
|
75 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
76 |
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
77 |
+
model.export_mesh(data_config, mesh_path_glb, tri_fea_2 = triplane_feature2)
|
78 |
+
|
79 |
+
# glctx = dr.RasterizeGLContext()#dr.RasterizeCudaContext()
|
80 |
+
# mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
81 |
+
# model.export_mesh_wt_uv(glctx, data_config, mesh_path_obj, "", device, res=(1024,1024), tri_fea_2=triplane_feature2)
|
82 |
+
|
83 |
+
# mesh = Mesh.load(mesh_path_obj+".obj", bound=0.9, front_dir="+z")
|
84 |
+
# mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
85 |
+
# mesh.write(mesh_path_glb+".glb")
|
86 |
|
87 |
+
# # mesh_obj2 = trimesh.load(mesh_path_glb+".glb", file_type='glb')
|
88 |
+
# # mesh_path_obj2 = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
89 |
+
# # mesh_obj2.export(mesh_path_obj2+".obj")
|
90 |
|
91 |
+
# with zipfile.ZipFile(mesh_path_obj+'.zip', 'w') as myzip:
|
92 |
+
# myzip.write(mesh_path_obj+'.obj', mesh_path_obj.split("/")[-1]+'.obj')
|
93 |
+
# myzip.write(mesh_path_obj+'.png', mesh_path_obj.split("/")[-1]+'.png')
|
94 |
+
# myzip.write(mesh_path_obj+'.mtl', mesh_path_obj.split("/")[-1]+'.mtl')
|
95 |
|
96 |
end_time = time.time()
|
97 |
elapsed_time = end_time - start_time
|
98 |
print(f"uv takes {elapsed_time}s")
|
99 |
+
return mesh_path_glb+".obj"
|
model/crm/model.py
CHANGED
@@ -89,7 +89,7 @@ class CRM(nn.Module):
|
|
89 |
_, verts, faces = self.renderer(data, pred_sdf, deformation, tet_verts, tet_indices, weight= weight)
|
90 |
return verts[0].unsqueeze(0), faces[0].int()
|
91 |
|
92 |
-
def export_mesh(self, data, out_dir,
|
93 |
verts = data['verts']
|
94 |
faces = data['faces']
|
95 |
|
@@ -98,13 +98,13 @@ class CRM(nn.Module):
|
|
98 |
# Expect predicted colors value range from [-1, 1]
|
99 |
colors = (colors * 0.5 + 0.5).clip(0, 1)
|
100 |
|
101 |
-
verts = verts.squeeze().cpu().numpy()
|
102 |
-
faces = faces[..., [2, 1, 0]].squeeze().cpu().numpy()
|
103 |
|
104 |
# export the final mesh
|
105 |
with torch.no_grad():
|
106 |
mesh = trimesh.Trimesh(verts, faces, vertex_colors=colors, process=False) # important, process=True leads to seg fault...
|
107 |
-
mesh.export(
|
108 |
|
109 |
def export_mesh_wt_uv(self, ctx, data, out_dir, ind, device, res, tri_fea_2=None):
|
110 |
|
|
|
89 |
_, verts, faces = self.renderer(data, pred_sdf, deformation, tet_verts, tet_indices, weight= weight)
|
90 |
return verts[0].unsqueeze(0), faces[0].int()
|
91 |
|
92 |
+
def export_mesh(self, data, out_dir, tri_fea_2 = None):
|
93 |
verts = data['verts']
|
94 |
faces = data['faces']
|
95 |
|
|
|
98 |
# Expect predicted colors value range from [-1, 1]
|
99 |
colors = (colors * 0.5 + 0.5).clip(0, 1)
|
100 |
|
101 |
+
verts = verts[..., [0, 2, 1]].squeeze().cpu().numpy()
|
102 |
+
faces = faces[..., [2, 1, 0]][..., [0, 2, 1]].squeeze().cpu().numpy()#faces[..., [2, 1, 0]].squeeze().cpu().numpy()
|
103 |
|
104 |
# export the final mesh
|
105 |
with torch.no_grad():
|
106 |
mesh = trimesh.Trimesh(verts, faces, vertex_colors=colors, process=False) # important, process=True leads to seg fault...
|
107 |
+
mesh.export(f'{out_dir}.obj')
|
108 |
|
109 |
def export_mesh_wt_uv(self, ctx, data, out_dir, ind, device, res, tri_fea_2=None):
|
110 |
|