|
import torch.nn as nn |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
import numpy as np |
|
|
|
|
|
from pathlib import Path |
|
import cv2 |
|
import trimesh |
|
import nvdiffrast.torch as dr |
|
|
|
from model.archs.decoders.shape_texture_net import TetTexNet |
|
from model.archs.unet import UNetPP |
|
from util.renderer import Renderer |
|
from model.archs.mlp_head import SdfMlp, RgbMlp |
|
import xatlas |
|
|
|
|
|
class Dummy: |
|
pass |
|
|
|
class CRM(nn.Module): |
|
def __init__(self, specs): |
|
super(CRM, self).__init__() |
|
|
|
self.specs = specs |
|
|
|
input_specs = specs["Input"] |
|
self.input = Dummy() |
|
self.input.scale = input_specs['scale'] |
|
self.input.resolution = input_specs['resolution'] |
|
self.tet_grid_size = input_specs['tet_grid_size'] |
|
self.camera_angle_num = input_specs['camera_angle_num'] |
|
|
|
self.arch = Dummy() |
|
self.arch.fea_concat = specs["ArchSpecs"]["fea_concat"] |
|
self.arch.mlp_bias = specs["ArchSpecs"]["mlp_bias"] |
|
|
|
self.dec = Dummy() |
|
self.dec.c_dim = specs["DecoderSpecs"]["c_dim"] |
|
self.dec.plane_resolution = specs["DecoderSpecs"]["plane_resolution"] |
|
|
|
self.geo_type = specs["Train"].get("geo_type", "flex") |
|
|
|
self.unet2 = UNetPP(in_channels=self.dec.c_dim) |
|
|
|
mlp_chnl_s = 3 if self.arch.fea_concat else 1 |
|
self.decoder = TetTexNet(plane_reso=self.dec.plane_resolution, fea_concat=self.arch.fea_concat) |
|
|
|
if self.geo_type == "flex": |
|
self.weightMlp = nn.Sequential( |
|
nn.Linear(mlp_chnl_s * 32 * 8, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, 21)) |
|
|
|
self.sdfMlp = SdfMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias) |
|
self.rgbMlp = RgbMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias) |
|
self.renderer = Renderer(tet_grid_size=self.tet_grid_size, camera_angle_num=self.camera_angle_num, |
|
scale=self.input.scale, geo_type = self.geo_type) |
|
|
|
|
|
self.spob = True if specs['Pretrain']['mode'] is None else False |
|
self.radius = specs['Pretrain']['radius'] |
|
|
|
self.denoising = True |
|
from diffusers import DDIMScheduler |
|
self.scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler") |
|
|
|
def decode(self, data, triplane_feature2): |
|
if self.geo_type == "flex": |
|
tet_verts = self.renderer.flexicubes.verts.unsqueeze(0) |
|
tet_indices = self.renderer.flexicubes.indices |
|
|
|
dec_verts = self.decoder(triplane_feature2, tet_verts) |
|
out = self.sdfMlp(dec_verts) |
|
|
|
weight = None |
|
if self.geo_type == "flex": |
|
grid_feat = torch.index_select(input=dec_verts, index=self.renderer.flexicubes.indices.reshape(-1),dim=1) |
|
grid_feat = grid_feat.reshape(dec_verts.shape[0], self.renderer.flexicubes.indices.shape[0], self.renderer.flexicubes.indices.shape[1] * dec_verts.shape[-1]) |
|
weight = self.weightMlp(grid_feat) |
|
weight = weight * 0.1 |
|
|
|
pred_sdf, deformation = out[..., 0], out[..., 1:] |
|
if self.spob: |
|
pred_sdf = pred_sdf + self.radius - torch.sqrt((tet_verts**2).sum(-1)) |
|
|
|
_, verts, faces = self.renderer(data, pred_sdf, deformation, tet_verts, tet_indices, weight= weight) |
|
return verts[0].unsqueeze(0), faces[0].int() |
|
|
|
def export_mesh(self, data, out_dir, ind, device=None, tri_fea_2 = None): |
|
verts = data['verts'] |
|
faces = data['faces'] |
|
|
|
dec_verts = self.decoder(tri_fea_2, verts.unsqueeze(0)) |
|
colors = self.rgbMlp(dec_verts).squeeze().detach().cpu().numpy() |
|
|
|
colors = (colors * 0.5 + 0.5).clip(0, 1) |
|
|
|
verts = verts.squeeze().cpu().numpy() |
|
faces = faces[..., [2, 1, 0]].squeeze().cpu().numpy() |
|
|
|
|
|
with torch.no_grad(): |
|
mesh = trimesh.Trimesh(verts, faces, vertex_colors=colors, process=False) |
|
mesh.export(out_dir / f'{ind}.obj') |
|
|
|
def export_mesh_wt_uv(self, ctx, data, out_dir, ind, device, res, tri_fea_2=None): |
|
|
|
mesh_v = data['verts'].squeeze().cpu().numpy() |
|
mesh_pos_idx = data['faces'].squeeze().cpu().numpy() |
|
|
|
def interpolate(attr, rast, attr_idx, rast_db=None): |
|
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, |
|
diff_attrs=None if rast_db is None else 'all') |
|
|
|
vmapping, indices, uvs = xatlas.parametrize(mesh_v, mesh_pos_idx) |
|
|
|
mesh_v = torch.tensor(mesh_v, dtype=torch.float32, device=device) |
|
mesh_pos_idx = torch.tensor(mesh_pos_idx, dtype=torch.int64, device=device) |
|
|
|
|
|
indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) |
|
|
|
uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) |
|
mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) |
|
|
|
uv_clip = uvs[None, ...] * 2.0 - 1.0 |
|
|
|
|
|
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) |
|
|
|
|
|
rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), res) |
|
|
|
|
|
gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) |
|
mask = rast[..., 3:4] > 0 |
|
|
|
|
|
gb_pos_unsqz = gb_pos.view(-1, 3) |
|
mask_unsqz = mask.view(-1) |
|
tex_unsqz = torch.zeros_like(gb_pos_unsqz) + 1 |
|
|
|
gb_mask_pos = gb_pos_unsqz[mask_unsqz] |
|
|
|
gb_mask_pos = gb_mask_pos[None, ] |
|
|
|
with torch.no_grad(): |
|
|
|
dec_verts = self.decoder(tri_fea_2, gb_mask_pos) |
|
colors = self.rgbMlp(dec_verts).squeeze() |
|
|
|
|
|
lo, hi = (-1, 1) |
|
colors = (colors - lo) * (255 / (hi - lo)) |
|
colors = colors.clip(0, 255) |
|
|
|
tex_unsqz[mask_unsqz] = colors |
|
|
|
tex = tex_unsqz.view(res + (3,)) |
|
|
|
verts = mesh_v.squeeze().cpu().numpy() |
|
faces = mesh_pos_idx[..., [2, 1, 0]].squeeze().cpu().numpy() |
|
|
|
|
|
|
|
indices = indices[..., [2, 1, 0]] |
|
|
|
|
|
matname = f'{out_dir}.mtl' |
|
|
|
fid = open(matname, 'w') |
|
fid.write('newmtl material_0\n') |
|
fid.write('Kd 1 1 1\n') |
|
fid.write('Ka 1 1 1\n') |
|
|
|
fid.write('Ks 0.4 0.4 0.4\n') |
|
fid.write('Ns 10\n') |
|
fid.write('illum 2\n') |
|
fid.write(f'map_Kd {out_dir.split("/")[-1]}.png\n') |
|
fid.close() |
|
|
|
fid = open(f'{out_dir}.obj', 'w') |
|
|
|
fid.write('mtllib %s.mtl\n' % out_dir.split("/")[-1]) |
|
|
|
for pidx, p in enumerate(verts): |
|
pp = p |
|
fid.write('v %f %f %f\n' % (pp[0], pp[2], - pp[1])) |
|
|
|
for pidx, p in enumerate(uvs): |
|
pp = p |
|
fid.write('vt %f %f\n' % (pp[0], 1 - pp[1])) |
|
|
|
fid.write('usemtl material_0\n') |
|
for i, f in enumerate(faces): |
|
f1 = f + 1 |
|
f2 = indices[i] + 1 |
|
fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2])) |
|
fid.close() |
|
|
|
img = np.asarray(tex.data.cpu().numpy(), dtype=np.float32) |
|
mask = np.sum(img.astype(float), axis=-1, keepdims=True) |
|
mask = (mask <= 3.0).astype(float) |
|
kernel = np.ones((3, 3), 'uint8') |
|
dilate_img = cv2.dilate(img, kernel, iterations=1) |
|
img = img * (1 - mask) + dilate_img * mask |
|
img = img.clip(0, 255).astype(np.uint8) |
|
|
|
cv2.imwrite(f'{out_dir}.png', img[..., [2, 1, 0]]) |
|
|
|
|