Tirath5504 commited on
Commit
4000d7b
1 Parent(s): b6d3a33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -9
app.py CHANGED
@@ -30,15 +30,22 @@ def spam_detection(input_text):
30
 
31
  def negative_zero_shot(input_text):
32
  try:
33
- return model.generate_content(f'Issues should be from ["Misconduct" , "Negligence" , "Discrimination" , "Corruption" , "Violation of Rights" , "Inefficiency" , "Unprofessional Conduct", "Response Time" , "Use of Firearms" , "Property Damage"] only. Give me the issue faced by the feedback giver in less than four words: {input_text}').text
34
  except Exception as e:
35
  return "Offensive"
36
 
37
  def positive_zero_shot(input_text):
38
  try:
39
- return model.generate_content(f'Issues should be from ["Miscellaneous", "Tech-Savvy Staff" , "Co-operative Staff" , "Well-Maintained Premises" , "Responsive Staff"] only. Give me the issue faced by the feedback giver in less than four words: {input_text}').text
40
  except Exception as e:
41
- return "Offensive"
 
 
 
 
 
 
 
42
  def pipeline(input_text):
43
 
44
  input_text = translate(input_text)
@@ -46,25 +53,26 @@ def pipeline(input_text):
46
  if spam_detection(input_text):
47
 
48
  sent = float(sentiment(input_text))
 
49
 
50
  if sent > 0:
51
 
52
- return str(sent), positive_zero_shot(input_text)
53
 
54
  elif sent < 0:
55
 
56
- return str(sent), negative_zero_shot(input_text)
57
 
58
  else:
59
 
60
- return "0", "No issue"
61
  else:
62
- return "42", "Spam"
63
 
64
  iface = gr.Interface(
65
  fn = pipeline,
66
  inputs = ["text"],
67
- outputs = ["text", "text"]
68
  )
69
 
70
- iface.launch(share=True)
 
30
 
31
  def negative_zero_shot(input_text):
32
  try:
33
+ return model.generate_content(f'Issues should be from ["Misconduct" , "Negligence" , "Discrimination" , "Corruption" , "Violation of Rights" , "Inefficiency" , "Unprofessional Conduct", "Response Time" , "Use of Firearms" , "Property Damage"] only. Give me the issue faced by the feedback giver in less than four words. If no specific category is detected, take "Offensive" as default. Feedback: {input_text}').text
34
  except Exception as e:
35
  return "Offensive"
36
 
37
  def positive_zero_shot(input_text):
38
  try:
39
+ return model.generate_content(f'Issues should be from ["Miscellaneous", "Tech-Savvy Staff" , "Co-operative Staff" , "Well-Maintained Premises" , "Responsive Staff"] only. Give me the issue faced by the feedback giver in less than four words. If no specific category is detected, take "Appreciation" as default. Feedback: {input_text}').text
40
  except Exception as e:
41
+ return "Appreciation"
42
+
43
+ def which_department(input_text):
44
+ try:
45
+ return model.generate_content(f'Departments should be from ["Crime branch", "Rajasthan Armed Constabulary (RAC)", "State Special Branch", "Anti Terrorist Squad (ATS)", "Planning and Welfare", "Training", "Forensic Science laboratory", "Telecommunications", "Cybersecurity", "Traffic Police"] only. Give me the department about which the user is giving feedback. If no specific department is mentioned, take "Crime Branch" as default. Feedback: {input_text}').text
46
+ except Exception as e:
47
+ return "Crime branch"
48
+
49
  def pipeline(input_text):
50
 
51
  input_text = translate(input_text)
 
53
  if spam_detection(input_text):
54
 
55
  sent = float(sentiment(input_text))
56
+ dept = which_department(input_text)
57
 
58
  if sent > 0:
59
 
60
+ return str(sent), positive_zero_shot(input_text), dept
61
 
62
  elif sent < 0:
63
 
64
+ return str(sent), negative_zero_shot(input_text), dept
65
 
66
  else:
67
 
68
+ return "0", "No issue", dept
69
  else:
70
+ return "42", "Spam", "No department"
71
 
72
  iface = gr.Interface(
73
  fn = pipeline,
74
  inputs = ["text"],
75
+ outputs = ["text", "text", "text"]
76
  )
77
 
78
+ iface.launch()