Spaces:
Runtime error
Runtime error
import argparse | |
import gc | |
import json | |
import os | |
from pathlib import Path | |
import tempfile | |
from typing import TYPE_CHECKING, List | |
import torch | |
import ffmpeg | |
class DiarizationEntry: | |
def __init__(self, start, end, speaker): | |
self.start = start | |
self.end = end | |
self.speaker = speaker | |
def __repr__(self): | |
return f"<DiarizationEntry start={self.start} end={self.end} speaker={self.speaker}>" | |
def toJson(self): | |
return { | |
"start": self.start, | |
"end": self.end, | |
"speaker": self.speaker | |
} | |
class Diarization: | |
def __init__(self, auth_token=None): | |
if auth_token is None: | |
auth_token = os.environ.get("HK_ACCESS_TOKEN") | |
if auth_token is None: | |
raise ValueError("No HuggingFace API Token provided - please use the --auth_token argument or set the HK_ACCESS_TOKEN environment variable") | |
self.auth_token = auth_token | |
self.initialized = False | |
self.pipeline = None | |
def has_libraries(): | |
try: | |
import pyannote.audio | |
import intervaltree | |
return True | |
except ImportError: | |
return False | |
def initialize(self): | |
if self.initialized: | |
return | |
from pyannote.audio import Pipeline | |
self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1", use_auth_token=self.auth_token) | |
self.initialized = True | |
# Load GPU mode if available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if device == "cuda": | |
print("Diarization - using GPU") | |
self.pipeline = self.pipeline.to(torch.device(0)) | |
else: | |
print("Diarization - using CPU") | |
def run(self, audio_file, **kwargs): | |
self.initialize() | |
audio_file_obj = Path(audio_file) | |
# Supported file types in soundfile is WAV, FLAC, OGG and MAT | |
if audio_file_obj.suffix in [".wav", ".flac", ".ogg", ".mat"]: | |
target_file = audio_file | |
else: | |
# Create temp WAV file | |
target_file = tempfile.mktemp(prefix="diarization_", suffix=".wav") | |
try: | |
ffmpeg.input(audio_file).output(target_file, ac=1).run() | |
except ffmpeg.Error as e: | |
print(f"Error occurred during audio conversion: {e.stderr}") | |
diarization = self.pipeline(target_file, **kwargs) | |
if target_file != audio_file: | |
# Delete temp file | |
os.remove(target_file) | |
# Yield result | |
for turn, _, speaker in diarization.itertracks(yield_label=True): | |
yield DiarizationEntry(turn.start, turn.end, speaker) | |
def mark_speakers(self, diarization_result: List[DiarizationEntry], whisper_result: dict): | |
from intervaltree import IntervalTree | |
result = whisper_result.copy() | |
# Create an interval tree from the diarization results | |
tree = IntervalTree() | |
for entry in diarization_result: | |
tree[entry.start:entry.end] = entry | |
# Iterate through each segment in the Whisper JSON | |
for segment in result["segments"]: | |
segment_start = segment["start"] | |
segment_end = segment["end"] | |
# Find overlapping speakers using the interval tree | |
overlapping_speakers = tree[segment_start:segment_end] | |
# If no speakers overlap with this segment, skip it | |
if not overlapping_speakers: | |
continue | |
# If multiple speakers overlap with this segment, choose the one with the longest duration | |
longest_speaker = None | |
longest_duration = 0 | |
for speaker_interval in overlapping_speakers: | |
overlap_start = max(speaker_interval.begin, segment_start) | |
overlap_end = min(speaker_interval.end, segment_end) | |
overlap_duration = overlap_end - overlap_start | |
if overlap_duration > longest_duration: | |
longest_speaker = speaker_interval.data.speaker | |
longest_duration = overlap_duration | |
# Add speakers | |
segment["longest_speaker"] = longest_speaker | |
segment["speakers"] = list([speaker_interval.data.toJson() for speaker_interval in overlapping_speakers]) | |
# The write_srt will use the longest_speaker if it exist, and add it to the text field | |
return result | |
def _write_file(input_file: str, output_path: str, output_extension: str, file_writer: lambda f: None): | |
if input_file is None: | |
raise ValueError("input_file is required") | |
if file_writer is None: | |
raise ValueError("file_writer is required") | |
# Write file | |
if output_path is None: | |
effective_path = os.path.splitext(input_file)[0] + "_output" + output_extension | |
else: | |
effective_path = output_path | |
with open(effective_path, 'w+', encoding="utf-8") as f: | |
file_writer(f) | |
print(f"Output saved to {effective_path}") | |
def main(): | |
from src.utils import write_srt | |
from src.diarization.transcriptLoader import load_transcript | |
parser = argparse.ArgumentParser(description='Add speakers to a SRT file or Whisper JSON file using pyannote/speaker-diarization.') | |
parser.add_argument('audio_file', type=str, help='Input audio file') | |
parser.add_argument('whisper_file', type=str, help='Input Whisper JSON/SRT file') | |
parser.add_argument('--output_json_file', type=str, default=None, help='Output JSON file (optional)') | |
parser.add_argument('--output_srt_file', type=str, default=None, help='Output SRT file (optional)') | |
parser.add_argument('--auth_token', type=str, default=None, help='HuggingFace API Token (optional)') | |
parser.add_argument("--max_line_width", type=int, default=40, help="Maximum line width for SRT file (default: 40)") | |
parser.add_argument("--num_speakers", type=int, default=None, help="Number of speakers") | |
parser.add_argument("--min_speakers", type=int, default=None, help="Minimum number of speakers") | |
parser.add_argument("--max_speakers", type=int, default=None, help="Maximum number of speakers") | |
args = parser.parse_args() | |
print("\nReading whisper JSON from " + args.whisper_file) | |
# Read whisper JSON or SRT file | |
whisper_result = load_transcript(args.whisper_file) | |
diarization = Diarization(auth_token=args.auth_token) | |
diarization_result = list(diarization.run(args.audio_file, num_speakers=args.num_speakers, min_speakers=args.min_speakers, max_speakers=args.max_speakers)) | |
# Print result | |
print("Diarization result:") | |
for entry in diarization_result: | |
print(f" start={entry.start:.1f}s stop={entry.end:.1f}s speaker_{entry.speaker}") | |
marked_whisper_result = diarization.mark_speakers(diarization_result, whisper_result) | |
# Write output JSON to file | |
_write_file(args.whisper_file, args.output_json_file, ".json", | |
lambda f: json.dump(marked_whisper_result, f, indent=4, ensure_ascii=False)) | |
# Write SRT | |
_write_file(args.whisper_file, args.output_srt_file, ".srt", | |
lambda f: write_srt(marked_whisper_result["segments"], f, maxLineWidth=args.max_line_width)) | |
if __name__ == "__main__": | |
main() | |
#test = Diarization() | |
#print("Initializing") | |
#test.initialize() | |
#input("Press Enter to continue...") |