Spaces:
Build error
Build error
# Copyright (c) 2004 Python Software Foundation. | |
# All rights reserved. | |
# Written by Eric Price <eprice at tjhsst.edu> | |
# and Facundo Batista <facundo at taniquetil.com.ar> | |
# and Raymond Hettinger <python at rcn.com> | |
# and Aahz <aahz at pobox.com> | |
# and Tim Peters | |
# This module should be kept in sync with the latest updates of the | |
# IBM specification as it evolves. Those updates will be treated | |
# as bug fixes (deviation from the spec is a compatibility, usability | |
# bug) and will be backported. At this point the spec is stabilizing | |
# and the updates are becoming fewer, smaller, and less significant. | |
""" | |
This is an implementation of decimal floating point arithmetic based on | |
the General Decimal Arithmetic Specification: | |
http://speleotrove.com/decimal/decarith.html | |
and IEEE standard 854-1987: | |
http://en.wikipedia.org/wiki/IEEE_854-1987 | |
Decimal floating point has finite precision with arbitrarily large bounds. | |
The purpose of this module is to support arithmetic using familiar | |
"schoolhouse" rules and to avoid some of the tricky representation | |
issues associated with binary floating point. The package is especially | |
useful for financial applications or for contexts where users have | |
expectations that are at odds with binary floating point (for instance, | |
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead | |
of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected | |
Decimal('0.00')). | |
Here are some examples of using the decimal module: | |
from decimal import * | |
setcontext(ExtendedContext) | |
Decimal(0) | |
Decimal('0') | |
Decimal('1') | |
Decimal('1') | |
Decimal('-.0123') | |
Decimal('-0.0123') | |
Decimal(123456) | |
Decimal('123456') | |
Decimal('123.45e12345678') | |
Decimal('1.2345E+12345680') | |
Decimal('1.33') + Decimal('1.27') | |
Decimal('2.60') | |
Decimal('12.34') + Decimal('3.87') - Decimal('18.41') | |
Decimal('-2.20') | |
dig = Decimal(1) | |
print(dig / Decimal(3)) | |
0.333333333 | |
getcontext().prec = 18 | |
print(dig / Decimal(3)) | |
0.333333333333333333 | |
print(dig.sqrt()) | |
1 | |
print(Decimal(3).sqrt()) | |
1.73205080756887729 | |
print(Decimal(3) ** 123) | |
4.85192780976896427E+58 | |
inf = Decimal(1) / Decimal(0) | |
print(inf) | |
Infinity | |
neginf = Decimal(-1) / Decimal(0) | |
print(neginf) | |
-Infinity | |
print(neginf + inf) | |
NaN | |
print(neginf * inf) | |
-Infinity | |
print(dig / 0) | |
Infinity | |
getcontext().traps[DivisionByZero] = 1 | |
print(dig / 0) | |
Traceback (most recent call last): | |
... | |
... | |
... | |
decimal.DivisionByZero: x / 0 | |
c = Context() | |
c.traps[InvalidOperation] = 0 | |
print(c.flags[InvalidOperation]) | |
0 | |
c.divide(Decimal(0), Decimal(0)) | |
Decimal('NaN') | |
c.traps[InvalidOperation] = 1 | |
print(c.flags[InvalidOperation]) | |
1 | |
c.flags[InvalidOperation] = 0 | |
print(c.flags[InvalidOperation]) | |
0 | |
print(c.divide(Decimal(0), Decimal(0))) | |
Traceback (most recent call last): | |
... | |
... | |
... | |
decimal.InvalidOperation: 0 / 0 | |
print(c.flags[InvalidOperation]) | |
1 | |
c.flags[InvalidOperation] = 0 | |
c.traps[InvalidOperation] = 0 | |
print(c.divide(Decimal(0), Decimal(0))) | |
NaN | |
print(c.flags[InvalidOperation]) | |
1 | |
>>> | |
""" | |
__all__ = [ | |
# Two major classes | |
'Decimal', 'Context', | |
# Named tuple representation | |
'DecimalTuple', | |
# Contexts | |
'DefaultContext', 'BasicContext', 'ExtendedContext', | |
# Exceptions | |
'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero', | |
'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow', | |
'FloatOperation', | |
# Exceptional conditions that trigger InvalidOperation | |
'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined', | |
# Constants for use in setting up contexts | |
'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING', | |
'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP', | |
# Functions for manipulating contexts | |
'setcontext', 'getcontext', 'localcontext', | |
# Limits for the C version for compatibility | |
'MAX_PREC', 'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY', | |
# C version: compile time choice that enables the thread local context (deprecated, now always true) | |
'HAVE_THREADS', | |
# C version: compile time choice that enables the coroutine local context | |
'HAVE_CONTEXTVAR' | |
] | |
__xname__ = __name__ # sys.modules lookup (--without-threads) | |
__name__ = 'decimal' # For pickling | |
__version__ = '1.70' # Highest version of the spec this complies with | |
# See http://speleotrove.com/decimal/ | |
__libmpdec_version__ = "2.4.2" # compatible libmpdec version | |
import math as _math | |
import numbers as _numbers | |
import sys | |
try: | |
from collections import namedtuple as _namedtuple | |
DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent') | |
except ImportError: | |
DecimalTuple = lambda *args: args | |
# Rounding | |
ROUND_DOWN = 'ROUND_DOWN' | |
ROUND_HALF_UP = 'ROUND_HALF_UP' | |
ROUND_HALF_EVEN = 'ROUND_HALF_EVEN' | |
ROUND_CEILING = 'ROUND_CEILING' | |
ROUND_FLOOR = 'ROUND_FLOOR' | |
ROUND_UP = 'ROUND_UP' | |
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN' | |
ROUND_05UP = 'ROUND_05UP' | |
# Compatibility with the C version | |
HAVE_THREADS = True | |
HAVE_CONTEXTVAR = True | |
if sys.maxsize == 2**63-1: | |
MAX_PREC = 999999999999999999 | |
MAX_EMAX = 999999999999999999 | |
MIN_EMIN = -999999999999999999 | |
else: | |
MAX_PREC = 425000000 | |
MAX_EMAX = 425000000 | |
MIN_EMIN = -425000000 | |
MIN_ETINY = MIN_EMIN - (MAX_PREC-1) | |
# Errors | |
class DecimalException(ArithmeticError): | |
"""Base exception class. | |
Used exceptions derive from this. | |
If an exception derives from another exception besides this (such as | |
Underflow (Inexact, Rounded, Subnormal) that indicates that it is only | |
called if the others are present. This isn't actually used for | |
anything, though. | |
handle -- Called when context._raise_error is called and the | |
trap_enabler is not set. First argument is self, second is the | |
context. More arguments can be given, those being after | |
the explanation in _raise_error (For example, | |
context._raise_error(NewError, '(-x)!', self._sign) would | |
call NewError().handle(context, self._sign).) | |
To define a new exception, it should be sufficient to have it derive | |
from DecimalException. | |
""" | |
def handle(self, context, *args): | |
pass | |
class Clamped(DecimalException): | |
"""Exponent of a 0 changed to fit bounds. | |
This occurs and signals clamped if the exponent of a result has been | |
altered in order to fit the constraints of a specific concrete | |
representation. This may occur when the exponent of a zero result would | |
be outside the bounds of a representation, or when a large normal | |
number would have an encoded exponent that cannot be represented. In | |
this latter case, the exponent is reduced to fit and the corresponding | |
number of zero digits are appended to the coefficient ("fold-down"). | |
""" | |
class InvalidOperation(DecimalException): | |
"""An invalid operation was performed. | |
Various bad things cause this: | |
Something creates a signaling NaN | |
-INF + INF | |
0 * (+-)INF | |
(+-)INF / (+-)INF | |
x % 0 | |
(+-)INF % x | |
x._rescale( non-integer ) | |
sqrt(-x) , x > 0 | |
0 ** 0 | |
x ** (non-integer) | |
x ** (+-)INF | |
An operand is invalid | |
The result of the operation after these is a quiet positive NaN, | |
except when the cause is a signaling NaN, in which case the result is | |
also a quiet NaN, but with the original sign, and an optional | |
diagnostic information. | |
""" | |
def handle(self, context, *args): | |
if args: | |
ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True) | |
return ans._fix_nan(context) | |
return _NaN | |
class ConversionSyntax(InvalidOperation): | |
"""Trying to convert badly formed string. | |
This occurs and signals invalid-operation if a string is being | |
converted to a number and it does not conform to the numeric string | |
syntax. The result is [0,qNaN]. | |
""" | |
def handle(self, context, *args): | |
return _NaN | |
class DivisionByZero(DecimalException, ZeroDivisionError): | |
"""Division by 0. | |
This occurs and signals division-by-zero if division of a finite number | |
by zero was attempted (during a divide-integer or divide operation, or a | |
power operation with negative right-hand operand), and the dividend was | |
not zero. | |
The result of the operation is [sign,inf], where sign is the exclusive | |
or of the signs of the operands for divide, or is 1 for an odd power of | |
-0, for power. | |
""" | |
def handle(self, context, sign, *args): | |
return _SignedInfinity[sign] | |
class DivisionImpossible(InvalidOperation): | |
"""Cannot perform the division adequately. | |
This occurs and signals invalid-operation if the integer result of a | |
divide-integer or remainder operation had too many digits (would be | |
longer than precision). The result is [0,qNaN]. | |
""" | |
def handle(self, context, *args): | |
return _NaN | |
class DivisionUndefined(InvalidOperation, ZeroDivisionError): | |
"""Undefined result of division. | |
This occurs and signals invalid-operation if division by zero was | |
attempted (during a divide-integer, divide, or remainder operation), and | |
the dividend is also zero. The result is [0,qNaN]. | |
""" | |
def handle(self, context, *args): | |
return _NaN | |
class Inexact(DecimalException): | |
"""Had to round, losing information. | |
This occurs and signals inexact whenever the result of an operation is | |
not exact (that is, it needed to be rounded and any discarded digits | |
were non-zero), or if an overflow or underflow condition occurs. The | |
result in all cases is unchanged. | |
The inexact signal may be tested (or trapped) to determine if a given | |
operation (or sequence of operations) was inexact. | |
""" | |
class InvalidContext(InvalidOperation): | |
"""Invalid context. Unknown rounding, for example. | |
This occurs and signals invalid-operation if an invalid context was | |
detected during an operation. This can occur if contexts are not checked | |
on creation and either the precision exceeds the capability of the | |
underlying concrete representation or an unknown or unsupported rounding | |
was specified. These aspects of the context need only be checked when | |
the values are required to be used. The result is [0,qNaN]. | |
""" | |
def handle(self, context, *args): | |
return _NaN | |
class Rounded(DecimalException): | |
"""Number got rounded (not necessarily changed during rounding). | |
This occurs and signals rounded whenever the result of an operation is | |
rounded (that is, some zero or non-zero digits were discarded from the | |
coefficient), or if an overflow or underflow condition occurs. The | |
result in all cases is unchanged. | |
The rounded signal may be tested (or trapped) to determine if a given | |
operation (or sequence of operations) caused a loss of precision. | |
""" | |
class Subnormal(DecimalException): | |
"""Exponent < Emin before rounding. | |
This occurs and signals subnormal whenever the result of a conversion or | |
operation is subnormal (that is, its adjusted exponent is less than | |
Emin, before any rounding). The result in all cases is unchanged. | |
The subnormal signal may be tested (or trapped) to determine if a given | |
or operation (or sequence of operations) yielded a subnormal result. | |
""" | |
class Overflow(Inexact, Rounded): | |
"""Numerical overflow. | |
This occurs and signals overflow if the adjusted exponent of a result | |
(from a conversion or from an operation that is not an attempt to divide | |
by zero), after rounding, would be greater than the largest value that | |
can be handled by the implementation (the value Emax). | |
The result depends on the rounding mode: | |
For round-half-up and round-half-even (and for round-half-down and | |
round-up, if implemented), the result of the operation is [sign,inf], | |
where sign is the sign of the intermediate result. For round-down, the | |
result is the largest finite number that can be represented in the | |
current precision, with the sign of the intermediate result. For | |
round-ceiling, the result is the same as for round-down if the sign of | |
the intermediate result is 1, or is [0,inf] otherwise. For round-floor, | |
the result is the same as for round-down if the sign of the intermediate | |
result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded | |
will also be raised. | |
""" | |
def handle(self, context, sign, *args): | |
if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN, | |
ROUND_HALF_DOWN, ROUND_UP): | |
return _SignedInfinity[sign] | |
if sign == 0: | |
if context.rounding == ROUND_CEILING: | |
return _SignedInfinity[sign] | |
return _dec_from_triple(sign, '9'*context.prec, | |
context.Emax-context.prec+1) | |
if sign == 1: | |
if context.rounding == ROUND_FLOOR: | |
return _SignedInfinity[sign] | |
return _dec_from_triple(sign, '9'*context.prec, | |
context.Emax-context.prec+1) | |
class Underflow(Inexact, Rounded, Subnormal): | |
"""Numerical underflow with result rounded to 0. | |
This occurs and signals underflow if a result is inexact and the | |
adjusted exponent of the result would be smaller (more negative) than | |
the smallest value that can be handled by the implementation (the value | |
Emin). That is, the result is both inexact and subnormal. | |
The result after an underflow will be a subnormal number rounded, if | |
necessary, so that its exponent is not less than Etiny. This may result | |
in 0 with the sign of the intermediate result and an exponent of Etiny. | |
In all cases, Inexact, Rounded, and Subnormal will also be raised. | |
""" | |
class FloatOperation(DecimalException, TypeError): | |
"""Enable stricter semantics for mixing floats and Decimals. | |
If the signal is not trapped (default), mixing floats and Decimals is | |
permitted in the Decimal() constructor, context.create_decimal() and | |
all comparison operators. Both conversion and comparisons are exact. | |
Any occurrence of a mixed operation is silently recorded by setting | |
FloatOperation in the context flags. Explicit conversions with | |
Decimal.from_float() or context.create_decimal_from_float() do not | |
set the flag. | |
Otherwise (the signal is trapped), only equality comparisons and explicit | |
conversions are silent. All other mixed operations raise FloatOperation. | |
""" | |
# List of public traps and flags | |
_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded, | |
Underflow, InvalidOperation, Subnormal, FloatOperation] | |
# Map conditions (per the spec) to signals | |
_condition_map = {ConversionSyntax:InvalidOperation, | |
DivisionImpossible:InvalidOperation, | |
DivisionUndefined:InvalidOperation, | |
InvalidContext:InvalidOperation} | |
# Valid rounding modes | |
_rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING, | |
ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP) | |
##### Context Functions ################################################## | |
# The getcontext() and setcontext() function manage access to a thread-local | |
# current context. | |
import contextvars | |
_current_context_var = contextvars.ContextVar('decimal_context') | |
def getcontext(): | |
"""Returns this thread's context. | |
If this thread does not yet have a context, returns | |
a new context and sets this thread's context. | |
New contexts are copies of DefaultContext. | |
""" | |
try: | |
return _current_context_var.get() | |
except LookupError: | |
context = Context() | |
_current_context_var.set(context) | |
return context | |
def setcontext(context): | |
"""Set this thread's context to context.""" | |
if context in (DefaultContext, BasicContext, ExtendedContext): | |
context = context.copy() | |
context.clear_flags() | |
_current_context_var.set(context) | |
del contextvars # Don't contaminate the namespace | |
def localcontext(ctx=None): | |
"""Return a context manager for a copy of the supplied context | |
Uses a copy of the current context if no context is specified | |
The returned context manager creates a local decimal context | |
in a with statement: | |
def sin(x): | |
with localcontext() as ctx: | |
ctx.prec += 2 | |
# Rest of sin calculation algorithm | |
# uses a precision 2 greater than normal | |
return +s # Convert result to normal precision | |
def sin(x): | |
with localcontext(ExtendedContext): | |
# Rest of sin calculation algorithm | |
# uses the Extended Context from the | |
# General Decimal Arithmetic Specification | |
return +s # Convert result to normal context | |
>>> setcontext(DefaultContext) | |
>>> print(getcontext().prec) | |
28 | |
>>> with localcontext(): | |
... ctx = getcontext() | |
... ctx.prec += 2 | |
... print(ctx.prec) | |
... | |
30 | |
>>> with localcontext(ExtendedContext): | |
... print(getcontext().prec) | |
... | |
9 | |
>>> print(getcontext().prec) | |
28 | |
""" | |
if ctx is None: ctx = getcontext() | |
return _ContextManager(ctx) | |
##### Decimal class ####################################################### | |
# Do not subclass Decimal from numbers.Real and do not register it as such | |
# (because Decimals are not interoperable with floats). See the notes in | |
# numbers.py for more detail. | |
class Decimal(object): | |
"""Floating point class for decimal arithmetic.""" | |
__slots__ = ('_exp','_int','_sign', '_is_special') | |
# Generally, the value of the Decimal instance is given by | |
# (-1)**_sign * _int * 10**_exp | |
# Special values are signified by _is_special == True | |
# We're immutable, so use __new__ not __init__ | |
def __new__(cls, value="0", context=None): | |
"""Create a decimal point instance. | |
>>> Decimal('3.14') # string input | |
Decimal('3.14') | |
>>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent) | |
Decimal('3.14') | |
>>> Decimal(314) # int | |
Decimal('314') | |
>>> Decimal(Decimal(314)) # another decimal instance | |
Decimal('314') | |
>>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay | |
Decimal('3.14') | |
""" | |
# Note that the coefficient, self._int, is actually stored as | |
# a string rather than as a tuple of digits. This speeds up | |
# the "digits to integer" and "integer to digits" conversions | |
# that are used in almost every arithmetic operation on | |
# Decimals. This is an internal detail: the as_tuple function | |
# and the Decimal constructor still deal with tuples of | |
# digits. | |
self = object.__new__(cls) | |
# From a string | |
# REs insist on real strings, so we can too. | |
if isinstance(value, str): | |
m = _parser(value.strip().replace("_", "")) | |
if m is None: | |
if context is None: | |
context = getcontext() | |
return context._raise_error(ConversionSyntax, | |
"Invalid literal for Decimal: %r" % value) | |
if m.group('sign') == "-": | |
self._sign = 1 | |
else: | |
self._sign = 0 | |
intpart = m.group('int') | |
if intpart is not None: | |
# finite number | |
fracpart = m.group('frac') or '' | |
exp = int(m.group('exp') or '0') | |
self._int = str(int(intpart+fracpart)) | |
self._exp = exp - len(fracpart) | |
self._is_special = False | |
else: | |
diag = m.group('diag') | |
if diag is not None: | |
# NaN | |
self._int = str(int(diag or '0')).lstrip('0') | |
if m.group('signal'): | |
self._exp = 'N' | |
else: | |
self._exp = 'n' | |
else: | |
# infinity | |
self._int = '0' | |
self._exp = 'F' | |
self._is_special = True | |
return self | |
# From an integer | |
if isinstance(value, int): | |
if value >= 0: | |
self._sign = 0 | |
else: | |
self._sign = 1 | |
self._exp = 0 | |
self._int = str(abs(value)) | |
self._is_special = False | |
return self | |
# From another decimal | |
if isinstance(value, Decimal): | |
self._exp = value._exp | |
self._sign = value._sign | |
self._int = value._int | |
self._is_special = value._is_special | |
return self | |
# From an internal working value | |
if isinstance(value, _WorkRep): | |
self._sign = value.sign | |
self._int = str(value.int) | |
self._exp = int(value.exp) | |
self._is_special = False | |
return self | |
# tuple/list conversion (possibly from as_tuple()) | |
if isinstance(value, (list,tuple)): | |
if len(value) != 3: | |
raise ValueError('Invalid tuple size in creation of Decimal ' | |
'from list or tuple. The list or tuple ' | |
'should have exactly three elements.') | |
# process sign. The isinstance test rejects floats | |
if not (isinstance(value[0], int) and value[0] in (0,1)): | |
raise ValueError("Invalid sign. The first value in the tuple " | |
"should be an integer; either 0 for a " | |
"positive number or 1 for a negative number.") | |
self._sign = value[0] | |
if value[2] == 'F': | |
# infinity: value[1] is ignored | |
self._int = '0' | |
self._exp = value[2] | |
self._is_special = True | |
else: | |
# process and validate the digits in value[1] | |
digits = [] | |
for digit in value[1]: | |
if isinstance(digit, int) and 0 <= digit <= 9: | |
# skip leading zeros | |
if digits or digit != 0: | |
digits.append(digit) | |
else: | |
raise ValueError("The second value in the tuple must " | |
"be composed of integers in the range " | |
"0 through 9.") | |
if value[2] in ('n', 'N'): | |
# NaN: digits form the diagnostic | |
self._int = ''.join(map(str, digits)) | |
self._exp = value[2] | |
self._is_special = True | |
elif isinstance(value[2], int): | |
# finite number: digits give the coefficient | |
self._int = ''.join(map(str, digits or [0])) | |
self._exp = value[2] | |
self._is_special = False | |
else: | |
raise ValueError("The third value in the tuple must " | |
"be an integer, or one of the " | |
"strings 'F', 'n', 'N'.") | |
return self | |
if isinstance(value, float): | |
if context is None: | |
context = getcontext() | |
context._raise_error(FloatOperation, | |
"strict semantics for mixing floats and Decimals are " | |
"enabled") | |
value = Decimal.from_float(value) | |
self._exp = value._exp | |
self._sign = value._sign | |
self._int = value._int | |
self._is_special = value._is_special | |
return self | |
raise TypeError("Cannot convert %r to Decimal" % value) | |
def from_float(cls, f): | |
"""Converts a float to a decimal number, exactly. | |
Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). | |
Since 0.1 is not exactly representable in binary floating point, the | |
value is stored as the nearest representable value which is | |
0x1.999999999999ap-4. The exact equivalent of the value in decimal | |
is 0.1000000000000000055511151231257827021181583404541015625. | |
>>> Decimal.from_float(0.1) | |
Decimal('0.1000000000000000055511151231257827021181583404541015625') | |
>>> Decimal.from_float(float('nan')) | |
Decimal('NaN') | |
>>> Decimal.from_float(float('inf')) | |
Decimal('Infinity') | |
>>> Decimal.from_float(-float('inf')) | |
Decimal('-Infinity') | |
>>> Decimal.from_float(-0.0) | |
Decimal('-0') | |
""" | |
if isinstance(f, int): # handle integer inputs | |
sign = 0 if f >= 0 else 1 | |
k = 0 | |
coeff = str(abs(f)) | |
elif isinstance(f, float): | |
if _math.isinf(f) or _math.isnan(f): | |
return cls(repr(f)) | |
if _math.copysign(1.0, f) == 1.0: | |
sign = 0 | |
else: | |
sign = 1 | |
n, d = abs(f).as_integer_ratio() | |
k = d.bit_length() - 1 | |
coeff = str(n*5**k) | |
else: | |
raise TypeError("argument must be int or float.") | |
result = _dec_from_triple(sign, coeff, -k) | |
if cls is Decimal: | |
return result | |
else: | |
return cls(result) | |
def _isnan(self): | |
"""Returns whether the number is not actually one. | |
0 if a number | |
1 if NaN | |
2 if sNaN | |
""" | |
if self._is_special: | |
exp = self._exp | |
if exp == 'n': | |
return 1 | |
elif exp == 'N': | |
return 2 | |
return 0 | |
def _isinfinity(self): | |
"""Returns whether the number is infinite | |
0 if finite or not a number | |
1 if +INF | |
-1 if -INF | |
""" | |
if self._exp == 'F': | |
if self._sign: | |
return -1 | |
return 1 | |
return 0 | |
def _check_nans(self, other=None, context=None): | |
"""Returns whether the number is not actually one. | |
if self, other are sNaN, signal | |
if self, other are NaN return nan | |
return 0 | |
Done before operations. | |
""" | |
self_is_nan = self._isnan() | |
if other is None: | |
other_is_nan = False | |
else: | |
other_is_nan = other._isnan() | |
if self_is_nan or other_is_nan: | |
if context is None: | |
context = getcontext() | |
if self_is_nan == 2: | |
return context._raise_error(InvalidOperation, 'sNaN', | |
self) | |
if other_is_nan == 2: | |
return context._raise_error(InvalidOperation, 'sNaN', | |
other) | |
if self_is_nan: | |
return self._fix_nan(context) | |
return other._fix_nan(context) | |
return 0 | |
def _compare_check_nans(self, other, context): | |
"""Version of _check_nans used for the signaling comparisons | |
compare_signal, __le__, __lt__, __ge__, __gt__. | |
Signal InvalidOperation if either self or other is a (quiet | |
or signaling) NaN. Signaling NaNs take precedence over quiet | |
NaNs. | |
Return 0 if neither operand is a NaN. | |
""" | |
if context is None: | |
context = getcontext() | |
if self._is_special or other._is_special: | |
if self.is_snan(): | |
return context._raise_error(InvalidOperation, | |
'comparison involving sNaN', | |
self) | |
elif other.is_snan(): | |
return context._raise_error(InvalidOperation, | |
'comparison involving sNaN', | |
other) | |
elif self.is_qnan(): | |
return context._raise_error(InvalidOperation, | |
'comparison involving NaN', | |
self) | |
elif other.is_qnan(): | |
return context._raise_error(InvalidOperation, | |
'comparison involving NaN', | |
other) | |
return 0 | |
def __bool__(self): | |
"""Return True if self is nonzero; otherwise return False. | |
NaNs and infinities are considered nonzero. | |
""" | |
return self._is_special or self._int != '0' | |
def _cmp(self, other): | |
"""Compare the two non-NaN decimal instances self and other. | |
Returns -1 if self < other, 0 if self == other and 1 | |
if self > other. This routine is for internal use only.""" | |
if self._is_special or other._is_special: | |
self_inf = self._isinfinity() | |
other_inf = other._isinfinity() | |
if self_inf == other_inf: | |
return 0 | |
elif self_inf < other_inf: | |
return -1 | |
else: | |
return 1 | |
# check for zeros; Decimal('0') == Decimal('-0') | |
if not self: | |
if not other: | |
return 0 | |
else: | |
return -((-1)**other._sign) | |
if not other: | |
return (-1)**self._sign | |
# If different signs, neg one is less | |
if other._sign < self._sign: | |
return -1 | |
if self._sign < other._sign: | |
return 1 | |
self_adjusted = self.adjusted() | |
other_adjusted = other.adjusted() | |
if self_adjusted == other_adjusted: | |
self_padded = self._int + '0'*(self._exp - other._exp) | |
other_padded = other._int + '0'*(other._exp - self._exp) | |
if self_padded == other_padded: | |
return 0 | |
elif self_padded < other_padded: | |
return -(-1)**self._sign | |
else: | |
return (-1)**self._sign | |
elif self_adjusted > other_adjusted: | |
return (-1)**self._sign | |
else: # self_adjusted < other_adjusted | |
return -((-1)**self._sign) | |
# Note: The Decimal standard doesn't cover rich comparisons for | |
# Decimals. In particular, the specification is silent on the | |
# subject of what should happen for a comparison involving a NaN. | |
# We take the following approach: | |
# | |
# == comparisons involving a quiet NaN always return False | |
# != comparisons involving a quiet NaN always return True | |
# == or != comparisons involving a signaling NaN signal | |
# InvalidOperation, and return False or True as above if the | |
# InvalidOperation is not trapped. | |
# <, >, <= and >= comparisons involving a (quiet or signaling) | |
# NaN signal InvalidOperation, and return False if the | |
# InvalidOperation is not trapped. | |
# | |
# This behavior is designed to conform as closely as possible to | |
# that specified by IEEE 754. | |
def __eq__(self, other, context=None): | |
self, other = _convert_for_comparison(self, other, equality_op=True) | |
if other is NotImplemented: | |
return other | |
if self._check_nans(other, context): | |
return False | |
return self._cmp(other) == 0 | |
def __lt__(self, other, context=None): | |
self, other = _convert_for_comparison(self, other) | |
if other is NotImplemented: | |
return other | |
ans = self._compare_check_nans(other, context) | |
if ans: | |
return False | |
return self._cmp(other) < 0 | |
def __le__(self, other, context=None): | |
self, other = _convert_for_comparison(self, other) | |
if other is NotImplemented: | |
return other | |
ans = self._compare_check_nans(other, context) | |
if ans: | |
return False | |
return self._cmp(other) <= 0 | |
def __gt__(self, other, context=None): | |
self, other = _convert_for_comparison(self, other) | |
if other is NotImplemented: | |
return other | |
ans = self._compare_check_nans(other, context) | |
if ans: | |
return False | |
return self._cmp(other) > 0 | |
def __ge__(self, other, context=None): | |
self, other = _convert_for_comparison(self, other) | |
if other is NotImplemented: | |
return other | |
ans = self._compare_check_nans(other, context) | |
if ans: | |
return False | |
return self._cmp(other) >= 0 | |
def compare(self, other, context=None): | |
"""Compare self to other. Return a decimal value: | |
a or b is a NaN ==> Decimal('NaN') | |
a < b ==> Decimal('-1') | |
a == b ==> Decimal('0') | |
a > b ==> Decimal('1') | |
""" | |
other = _convert_other(other, raiseit=True) | |
# Compare(NaN, NaN) = NaN | |
if (self._is_special or other and other._is_special): | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
return Decimal(self._cmp(other)) | |
def __hash__(self): | |
"""x.__hash__() <==> hash(x)""" | |
# In order to make sure that the hash of a Decimal instance | |
# agrees with the hash of a numerically equal integer, float | |
# or Fraction, we follow the rules for numeric hashes outlined | |
# in the documentation. (See library docs, 'Built-in Types'). | |
if self._is_special: | |
if self.is_snan(): | |
raise TypeError('Cannot hash a signaling NaN value.') | |
elif self.is_nan(): | |
return object.__hash__(self) | |
else: | |
if self._sign: | |
return -_PyHASH_INF | |
else: | |
return _PyHASH_INF | |
if self._exp >= 0: | |
exp_hash = pow(10, self._exp, _PyHASH_MODULUS) | |
else: | |
exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS) | |
hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS | |
ans = hash_ if self >= 0 else -hash_ | |
return -2 if ans == -1 else ans | |
def as_tuple(self): | |
"""Represents the number as a triple tuple. | |
To show the internals exactly as they are. | |
""" | |
return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp) | |
def as_integer_ratio(self): | |
"""Express a finite Decimal instance in the form n / d. | |
Returns a pair (n, d) of integers. When called on an infinity | |
or NaN, raises OverflowError or ValueError respectively. | |
>>> Decimal('3.14').as_integer_ratio() | |
(157, 50) | |
>>> Decimal('-123e5').as_integer_ratio() | |
(-12300000, 1) | |
>>> Decimal('0.00').as_integer_ratio() | |
(0, 1) | |
""" | |
if self._is_special: | |
if self.is_nan(): | |
raise ValueError("cannot convert NaN to integer ratio") | |
else: | |
raise OverflowError("cannot convert Infinity to integer ratio") | |
if not self: | |
return 0, 1 | |
# Find n, d in lowest terms such that abs(self) == n / d; | |
# we'll deal with the sign later. | |
n = int(self._int) | |
if self._exp >= 0: | |
# self is an integer. | |
n, d = n * 10**self._exp, 1 | |
else: | |
# Find d2, d5 such that abs(self) = n / (2**d2 * 5**d5). | |
d5 = -self._exp | |
while d5 > 0 and n % 5 == 0: | |
n //= 5 | |
d5 -= 1 | |
# (n & -n).bit_length() - 1 counts trailing zeros in binary | |
# representation of n (provided n is nonzero). | |
d2 = -self._exp | |
shift2 = min((n & -n).bit_length() - 1, d2) | |
if shift2: | |
n >>= shift2 | |
d2 -= shift2 | |
d = 5**d5 << d2 | |
if self._sign: | |
n = -n | |
return n, d | |
def __repr__(self): | |
"""Represents the number as an instance of Decimal.""" | |
# Invariant: eval(repr(d)) == d | |
return "Decimal('%s')" % str(self) | |
def __str__(self, eng=False, context=None): | |
"""Return string representation of the number in scientific notation. | |
Captures all of the information in the underlying representation. | |
""" | |
sign = ['', '-'][self._sign] | |
if self._is_special: | |
if self._exp == 'F': | |
return sign + 'Infinity' | |
elif self._exp == 'n': | |
return sign + 'NaN' + self._int | |
else: # self._exp == 'N' | |
return sign + 'sNaN' + self._int | |
# number of digits of self._int to left of decimal point | |
leftdigits = self._exp + len(self._int) | |
# dotplace is number of digits of self._int to the left of the | |
# decimal point in the mantissa of the output string (that is, | |
# after adjusting the exponent) | |
if self._exp <= 0 and leftdigits > -6: | |
# no exponent required | |
dotplace = leftdigits | |
elif not eng: | |
# usual scientific notation: 1 digit on left of the point | |
dotplace = 1 | |
elif self._int == '0': | |
# engineering notation, zero | |
dotplace = (leftdigits + 1) % 3 - 1 | |
else: | |
# engineering notation, nonzero | |
dotplace = (leftdigits - 1) % 3 + 1 | |
if dotplace <= 0: | |
intpart = '0' | |
fracpart = '.' + '0'*(-dotplace) + self._int | |
elif dotplace >= len(self._int): | |
intpart = self._int+'0'*(dotplace-len(self._int)) | |
fracpart = '' | |
else: | |
intpart = self._int[:dotplace] | |
fracpart = '.' + self._int[dotplace:] | |
if leftdigits == dotplace: | |
exp = '' | |
else: | |
if context is None: | |
context = getcontext() | |
exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace) | |
return sign + intpart + fracpart + exp | |
def to_eng_string(self, context=None): | |
"""Convert to a string, using engineering notation if an exponent is needed. | |
Engineering notation has an exponent which is a multiple of 3. This | |
can leave up to 3 digits to the left of the decimal place and may | |
require the addition of either one or two trailing zeros. | |
""" | |
return self.__str__(eng=True, context=context) | |
def __neg__(self, context=None): | |
"""Returns a copy with the sign switched. | |
Rounds, if it has reason. | |
""" | |
if self._is_special: | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
if context is None: | |
context = getcontext() | |
if not self and context.rounding != ROUND_FLOOR: | |
# -Decimal('0') is Decimal('0'), not Decimal('-0'), except | |
# in ROUND_FLOOR rounding mode. | |
ans = self.copy_abs() | |
else: | |
ans = self.copy_negate() | |
return ans._fix(context) | |
def __pos__(self, context=None): | |
"""Returns a copy, unless it is a sNaN. | |
Rounds the number (if more than precision digits) | |
""" | |
if self._is_special: | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
if context is None: | |
context = getcontext() | |
if not self and context.rounding != ROUND_FLOOR: | |
# + (-0) = 0, except in ROUND_FLOOR rounding mode. | |
ans = self.copy_abs() | |
else: | |
ans = Decimal(self) | |
return ans._fix(context) | |
def __abs__(self, round=True, context=None): | |
"""Returns the absolute value of self. | |
If the keyword argument 'round' is false, do not round. The | |
expression self.__abs__(round=False) is equivalent to | |
self.copy_abs(). | |
""" | |
if not round: | |
return self.copy_abs() | |
if self._is_special: | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
if self._sign: | |
ans = self.__neg__(context=context) | |
else: | |
ans = self.__pos__(context=context) | |
return ans | |
def __add__(self, other, context=None): | |
"""Returns self + other. | |
-INF + INF (or the reverse) cause InvalidOperation errors. | |
""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
if context is None: | |
context = getcontext() | |
if self._is_special or other._is_special: | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
if self._isinfinity(): | |
# If both INF, same sign => same as both, opposite => error. | |
if self._sign != other._sign and other._isinfinity(): | |
return context._raise_error(InvalidOperation, '-INF + INF') | |
return Decimal(self) | |
if other._isinfinity(): | |
return Decimal(other) # Can't both be infinity here | |
exp = min(self._exp, other._exp) | |
negativezero = 0 | |
if context.rounding == ROUND_FLOOR and self._sign != other._sign: | |
# If the answer is 0, the sign should be negative, in this case. | |
negativezero = 1 | |
if not self and not other: | |
sign = min(self._sign, other._sign) | |
if negativezero: | |
sign = 1 | |
ans = _dec_from_triple(sign, '0', exp) | |
ans = ans._fix(context) | |
return ans | |
if not self: | |
exp = max(exp, other._exp - context.prec-1) | |
ans = other._rescale(exp, context.rounding) | |
ans = ans._fix(context) | |
return ans | |
if not other: | |
exp = max(exp, self._exp - context.prec-1) | |
ans = self._rescale(exp, context.rounding) | |
ans = ans._fix(context) | |
return ans | |
op1 = _WorkRep(self) | |
op2 = _WorkRep(other) | |
op1, op2 = _normalize(op1, op2, context.prec) | |
result = _WorkRep() | |
if op1.sign != op2.sign: | |
# Equal and opposite | |
if op1.int == op2.int: | |
ans = _dec_from_triple(negativezero, '0', exp) | |
ans = ans._fix(context) | |
return ans | |
if op1.int < op2.int: | |
op1, op2 = op2, op1 | |
# OK, now abs(op1) > abs(op2) | |
if op1.sign == 1: | |
result.sign = 1 | |
op1.sign, op2.sign = op2.sign, op1.sign | |
else: | |
result.sign = 0 | |
# So we know the sign, and op1 > 0. | |
elif op1.sign == 1: | |
result.sign = 1 | |
op1.sign, op2.sign = (0, 0) | |
else: | |
result.sign = 0 | |
# Now, op1 > abs(op2) > 0 | |
if op2.sign == 0: | |
result.int = op1.int + op2.int | |
else: | |
result.int = op1.int - op2.int | |
result.exp = op1.exp | |
ans = Decimal(result) | |
ans = ans._fix(context) | |
return ans | |
__radd__ = __add__ | |
def __sub__(self, other, context=None): | |
"""Return self - other""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
if self._is_special or other._is_special: | |
ans = self._check_nans(other, context=context) | |
if ans: | |
return ans | |
# self - other is computed as self + other.copy_negate() | |
return self.__add__(other.copy_negate(), context=context) | |
def __rsub__(self, other, context=None): | |
"""Return other - self""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
return other.__sub__(self, context=context) | |
def __mul__(self, other, context=None): | |
"""Return self * other. | |
(+-) INF * 0 (or its reverse) raise InvalidOperation. | |
""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
if context is None: | |
context = getcontext() | |
resultsign = self._sign ^ other._sign | |
if self._is_special or other._is_special: | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
if self._isinfinity(): | |
if not other: | |
return context._raise_error(InvalidOperation, '(+-)INF * 0') | |
return _SignedInfinity[resultsign] | |
if other._isinfinity(): | |
if not self: | |
return context._raise_error(InvalidOperation, '0 * (+-)INF') | |
return _SignedInfinity[resultsign] | |
resultexp = self._exp + other._exp | |
# Special case for multiplying by zero | |
if not self or not other: | |
ans = _dec_from_triple(resultsign, '0', resultexp) | |
# Fixing in case the exponent is out of bounds | |
ans = ans._fix(context) | |
return ans | |
# Special case for multiplying by power of 10 | |
if self._int == '1': | |
ans = _dec_from_triple(resultsign, other._int, resultexp) | |
ans = ans._fix(context) | |
return ans | |
if other._int == '1': | |
ans = _dec_from_triple(resultsign, self._int, resultexp) | |
ans = ans._fix(context) | |
return ans | |
op1 = _WorkRep(self) | |
op2 = _WorkRep(other) | |
ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp) | |
ans = ans._fix(context) | |
return ans | |
__rmul__ = __mul__ | |
def __truediv__(self, other, context=None): | |
"""Return self / other.""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return NotImplemented | |
if context is None: | |
context = getcontext() | |
sign = self._sign ^ other._sign | |
if self._is_special or other._is_special: | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
if self._isinfinity() and other._isinfinity(): | |
return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF') | |
if self._isinfinity(): | |
return _SignedInfinity[sign] | |
if other._isinfinity(): | |
context._raise_error(Clamped, 'Division by infinity') | |
return _dec_from_triple(sign, '0', context.Etiny()) | |
# Special cases for zeroes | |
if not other: | |
if not self: | |
return context._raise_error(DivisionUndefined, '0 / 0') | |
return context._raise_error(DivisionByZero, 'x / 0', sign) | |
if not self: | |
exp = self._exp - other._exp | |
coeff = 0 | |
else: | |
# OK, so neither = 0, INF or NaN | |
shift = len(other._int) - len(self._int) + context.prec + 1 | |
exp = self._exp - other._exp - shift | |
op1 = _WorkRep(self) | |
op2 = _WorkRep(other) | |
if shift >= 0: | |
coeff, remainder = divmod(op1.int * 10**shift, op2.int) | |
else: | |
coeff, remainder = divmod(op1.int, op2.int * 10**-shift) | |
if remainder: | |
# result is not exact; adjust to ensure correct rounding | |
if coeff % 5 == 0: | |
coeff += 1 | |
else: | |
# result is exact; get as close to ideal exponent as possible | |
ideal_exp = self._exp - other._exp | |
while exp < ideal_exp and coeff % 10 == 0: | |
coeff //= 10 | |
exp += 1 | |
ans = _dec_from_triple(sign, str(coeff), exp) | |
return ans._fix(context) | |
def _divide(self, other, context): | |
"""Return (self // other, self % other), to context.prec precision. | |
Assumes that neither self nor other is a NaN, that self is not | |
infinite and that other is nonzero. | |
""" | |
sign = self._sign ^ other._sign | |
if other._isinfinity(): | |
ideal_exp = self._exp | |
else: | |
ideal_exp = min(self._exp, other._exp) | |
expdiff = self.adjusted() - other.adjusted() | |
if not self or other._isinfinity() or expdiff <= -2: | |
return (_dec_from_triple(sign, '0', 0), | |
self._rescale(ideal_exp, context.rounding)) | |
if expdiff <= context.prec: | |
op1 = _WorkRep(self) | |
op2 = _WorkRep(other) | |
if op1.exp >= op2.exp: | |
op1.int *= 10**(op1.exp - op2.exp) | |
else: | |
op2.int *= 10**(op2.exp - op1.exp) | |
q, r = divmod(op1.int, op2.int) | |
if q < 10**context.prec: | |
return (_dec_from_triple(sign, str(q), 0), | |
_dec_from_triple(self._sign, str(r), ideal_exp)) | |
# Here the quotient is too large to be representable | |
ans = context._raise_error(DivisionImpossible, | |
'quotient too large in //, % or divmod') | |
return ans, ans | |
def __rtruediv__(self, other, context=None): | |
"""Swaps self/other and returns __truediv__.""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
return other.__truediv__(self, context=context) | |
def __divmod__(self, other, context=None): | |
""" | |
Return (self // other, self % other) | |
""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
if context is None: | |
context = getcontext() | |
ans = self._check_nans(other, context) | |
if ans: | |
return (ans, ans) | |
sign = self._sign ^ other._sign | |
if self._isinfinity(): | |
if other._isinfinity(): | |
ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)') | |
return ans, ans | |
else: | |
return (_SignedInfinity[sign], | |
context._raise_error(InvalidOperation, 'INF % x')) | |
if not other: | |
if not self: | |
ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)') | |
return ans, ans | |
else: | |
return (context._raise_error(DivisionByZero, 'x // 0', sign), | |
context._raise_error(InvalidOperation, 'x % 0')) | |
quotient, remainder = self._divide(other, context) | |
remainder = remainder._fix(context) | |
return quotient, remainder | |
def __rdivmod__(self, other, context=None): | |
"""Swaps self/other and returns __divmod__.""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
return other.__divmod__(self, context=context) | |
def __mod__(self, other, context=None): | |
""" | |
self % other | |
""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
if context is None: | |
context = getcontext() | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
if self._isinfinity(): | |
return context._raise_error(InvalidOperation, 'INF % x') | |
elif not other: | |
if self: | |
return context._raise_error(InvalidOperation, 'x % 0') | |
else: | |
return context._raise_error(DivisionUndefined, '0 % 0') | |
remainder = self._divide(other, context)[1] | |
remainder = remainder._fix(context) | |
return remainder | |
def __rmod__(self, other, context=None): | |
"""Swaps self/other and returns __mod__.""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
return other.__mod__(self, context=context) | |
def remainder_near(self, other, context=None): | |
""" | |
Remainder nearest to 0- abs(remainder-near) <= other/2 | |
""" | |
if context is None: | |
context = getcontext() | |
other = _convert_other(other, raiseit=True) | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
# self == +/-infinity -> InvalidOperation | |
if self._isinfinity(): | |
return context._raise_error(InvalidOperation, | |
'remainder_near(infinity, x)') | |
# other == 0 -> either InvalidOperation or DivisionUndefined | |
if not other: | |
if self: | |
return context._raise_error(InvalidOperation, | |
'remainder_near(x, 0)') | |
else: | |
return context._raise_error(DivisionUndefined, | |
'remainder_near(0, 0)') | |
# other = +/-infinity -> remainder = self | |
if other._isinfinity(): | |
ans = Decimal(self) | |
return ans._fix(context) | |
# self = 0 -> remainder = self, with ideal exponent | |
ideal_exponent = min(self._exp, other._exp) | |
if not self: | |
ans = _dec_from_triple(self._sign, '0', ideal_exponent) | |
return ans._fix(context) | |
# catch most cases of large or small quotient | |
expdiff = self.adjusted() - other.adjusted() | |
if expdiff >= context.prec + 1: | |
# expdiff >= prec+1 => abs(self/other) > 10**prec | |
return context._raise_error(DivisionImpossible) | |
if expdiff <= -2: | |
# expdiff <= -2 => abs(self/other) < 0.1 | |
ans = self._rescale(ideal_exponent, context.rounding) | |
return ans._fix(context) | |
# adjust both arguments to have the same exponent, then divide | |
op1 = _WorkRep(self) | |
op2 = _WorkRep(other) | |
if op1.exp >= op2.exp: | |
op1.int *= 10**(op1.exp - op2.exp) | |
else: | |
op2.int *= 10**(op2.exp - op1.exp) | |
q, r = divmod(op1.int, op2.int) | |
# remainder is r*10**ideal_exponent; other is +/-op2.int * | |
# 10**ideal_exponent. Apply correction to ensure that | |
# abs(remainder) <= abs(other)/2 | |
if 2*r + (q&1) > op2.int: | |
r -= op2.int | |
q += 1 | |
if q >= 10**context.prec: | |
return context._raise_error(DivisionImpossible) | |
# result has same sign as self unless r is negative | |
sign = self._sign | |
if r < 0: | |
sign = 1-sign | |
r = -r | |
ans = _dec_from_triple(sign, str(r), ideal_exponent) | |
return ans._fix(context) | |
def __floordiv__(self, other, context=None): | |
"""self // other""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
if context is None: | |
context = getcontext() | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
if self._isinfinity(): | |
if other._isinfinity(): | |
return context._raise_error(InvalidOperation, 'INF // INF') | |
else: | |
return _SignedInfinity[self._sign ^ other._sign] | |
if not other: | |
if self: | |
return context._raise_error(DivisionByZero, 'x // 0', | |
self._sign ^ other._sign) | |
else: | |
return context._raise_error(DivisionUndefined, '0 // 0') | |
return self._divide(other, context)[0] | |
def __rfloordiv__(self, other, context=None): | |
"""Swaps self/other and returns __floordiv__.""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
return other.__floordiv__(self, context=context) | |
def __float__(self): | |
"""Float representation.""" | |
if self._isnan(): | |
if self.is_snan(): | |
raise ValueError("Cannot convert signaling NaN to float") | |
s = "-nan" if self._sign else "nan" | |
else: | |
s = str(self) | |
return float(s) | |
def __int__(self): | |
"""Converts self to an int, truncating if necessary.""" | |
if self._is_special: | |
if self._isnan(): | |
raise ValueError("Cannot convert NaN to integer") | |
elif self._isinfinity(): | |
raise OverflowError("Cannot convert infinity to integer") | |
s = (-1)**self._sign | |
if self._exp >= 0: | |
return s*int(self._int)*10**self._exp | |
else: | |
return s*int(self._int[:self._exp] or '0') | |
__trunc__ = __int__ | |
def real(self): | |
return self | |
def imag(self): | |
return Decimal(0) | |
def conjugate(self): | |
return self | |
def __complex__(self): | |
return complex(float(self)) | |
def _fix_nan(self, context): | |
"""Decapitate the payload of a NaN to fit the context""" | |
payload = self._int | |
# maximum length of payload is precision if clamp=0, | |
# precision-1 if clamp=1. | |
max_payload_len = context.prec - context.clamp | |
if len(payload) > max_payload_len: | |
payload = payload[len(payload)-max_payload_len:].lstrip('0') | |
return _dec_from_triple(self._sign, payload, self._exp, True) | |
return Decimal(self) | |
def _fix(self, context): | |
"""Round if it is necessary to keep self within prec precision. | |
Rounds and fixes the exponent. Does not raise on a sNaN. | |
Arguments: | |
self - Decimal instance | |
context - context used. | |
""" | |
if self._is_special: | |
if self._isnan(): | |
# decapitate payload if necessary | |
return self._fix_nan(context) | |
else: | |
# self is +/-Infinity; return unaltered | |
return Decimal(self) | |
# if self is zero then exponent should be between Etiny and | |
# Emax if clamp==0, and between Etiny and Etop if clamp==1. | |
Etiny = context.Etiny() | |
Etop = context.Etop() | |
if not self: | |
exp_max = [context.Emax, Etop][context.clamp] | |
new_exp = min(max(self._exp, Etiny), exp_max) | |
if new_exp != self._exp: | |
context._raise_error(Clamped) | |
return _dec_from_triple(self._sign, '0', new_exp) | |
else: | |
return Decimal(self) | |
# exp_min is the smallest allowable exponent of the result, | |
# equal to max(self.adjusted()-context.prec+1, Etiny) | |
exp_min = len(self._int) + self._exp - context.prec | |
if exp_min > Etop: | |
# overflow: exp_min > Etop iff self.adjusted() > Emax | |
ans = context._raise_error(Overflow, 'above Emax', self._sign) | |
context._raise_error(Inexact) | |
context._raise_error(Rounded) | |
return ans | |
self_is_subnormal = exp_min < Etiny | |
if self_is_subnormal: | |
exp_min = Etiny | |
# round if self has too many digits | |
if self._exp < exp_min: | |
digits = len(self._int) + self._exp - exp_min | |
if digits < 0: | |
self = _dec_from_triple(self._sign, '1', exp_min-1) | |
digits = 0 | |
rounding_method = self._pick_rounding_function[context.rounding] | |
changed = rounding_method(self, digits) | |
coeff = self._int[:digits] or '0' | |
if changed > 0: | |
coeff = str(int(coeff)+1) | |
if len(coeff) > context.prec: | |
coeff = coeff[:-1] | |
exp_min += 1 | |
# check whether the rounding pushed the exponent out of range | |
if exp_min > Etop: | |
ans = context._raise_error(Overflow, 'above Emax', self._sign) | |
else: | |
ans = _dec_from_triple(self._sign, coeff, exp_min) | |
# raise the appropriate signals, taking care to respect | |
# the precedence described in the specification | |
if changed and self_is_subnormal: | |
context._raise_error(Underflow) | |
if self_is_subnormal: | |
context._raise_error(Subnormal) | |
if changed: | |
context._raise_error(Inexact) | |
context._raise_error(Rounded) | |
if not ans: | |
# raise Clamped on underflow to 0 | |
context._raise_error(Clamped) | |
return ans | |
if self_is_subnormal: | |
context._raise_error(Subnormal) | |
# fold down if clamp == 1 and self has too few digits | |
if context.clamp == 1 and self._exp > Etop: | |
context._raise_error(Clamped) | |
self_padded = self._int + '0'*(self._exp - Etop) | |
return _dec_from_triple(self._sign, self_padded, Etop) | |
# here self was representable to begin with; return unchanged | |
return Decimal(self) | |
# for each of the rounding functions below: | |
# self is a finite, nonzero Decimal | |
# prec is an integer satisfying 0 <= prec < len(self._int) | |
# | |
# each function returns either -1, 0, or 1, as follows: | |
# 1 indicates that self should be rounded up (away from zero) | |
# 0 indicates that self should be truncated, and that all the | |
# digits to be truncated are zeros (so the value is unchanged) | |
# -1 indicates that there are nonzero digits to be truncated | |
def _round_down(self, prec): | |
"""Also known as round-towards-0, truncate.""" | |
if _all_zeros(self._int, prec): | |
return 0 | |
else: | |
return -1 | |
def _round_up(self, prec): | |
"""Rounds away from 0.""" | |
return -self._round_down(prec) | |
def _round_half_up(self, prec): | |
"""Rounds 5 up (away from 0)""" | |
if self._int[prec] in '56789': | |
return 1 | |
elif _all_zeros(self._int, prec): | |
return 0 | |
else: | |
return -1 | |
def _round_half_down(self, prec): | |
"""Round 5 down""" | |
if _exact_half(self._int, prec): | |
return -1 | |
else: | |
return self._round_half_up(prec) | |
def _round_half_even(self, prec): | |
"""Round 5 to even, rest to nearest.""" | |
if _exact_half(self._int, prec) and \ | |
(prec == 0 or self._int[prec-1] in '02468'): | |
return -1 | |
else: | |
return self._round_half_up(prec) | |
def _round_ceiling(self, prec): | |
"""Rounds up (not away from 0 if negative.)""" | |
if self._sign: | |
return self._round_down(prec) | |
else: | |
return -self._round_down(prec) | |
def _round_floor(self, prec): | |
"""Rounds down (not towards 0 if negative)""" | |
if not self._sign: | |
return self._round_down(prec) | |
else: | |
return -self._round_down(prec) | |
def _round_05up(self, prec): | |
"""Round down unless digit prec-1 is 0 or 5.""" | |
if prec and self._int[prec-1] not in '05': | |
return self._round_down(prec) | |
else: | |
return -self._round_down(prec) | |
_pick_rounding_function = dict( | |
ROUND_DOWN = _round_down, | |
ROUND_UP = _round_up, | |
ROUND_HALF_UP = _round_half_up, | |
ROUND_HALF_DOWN = _round_half_down, | |
ROUND_HALF_EVEN = _round_half_even, | |
ROUND_CEILING = _round_ceiling, | |
ROUND_FLOOR = _round_floor, | |
ROUND_05UP = _round_05up, | |
) | |
def __round__(self, n=None): | |
"""Round self to the nearest integer, or to a given precision. | |
If only one argument is supplied, round a finite Decimal | |
instance self to the nearest integer. If self is infinite or | |
a NaN then a Python exception is raised. If self is finite | |
and lies exactly halfway between two integers then it is | |
rounded to the integer with even last digit. | |
>>> round(Decimal('123.456')) | |
123 | |
>>> round(Decimal('-456.789')) | |
-457 | |
>>> round(Decimal('-3.0')) | |
-3 | |
>>> round(Decimal('2.5')) | |
2 | |
>>> round(Decimal('3.5')) | |
4 | |
>>> round(Decimal('Inf')) | |
Traceback (most recent call last): | |
... | |
OverflowError: cannot round an infinity | |
>>> round(Decimal('NaN')) | |
Traceback (most recent call last): | |
... | |
ValueError: cannot round a NaN | |
If a second argument n is supplied, self is rounded to n | |
decimal places using the rounding mode for the current | |
context. | |
For an integer n, round(self, -n) is exactly equivalent to | |
self.quantize(Decimal('1En')). | |
>>> round(Decimal('123.456'), 0) | |
Decimal('123') | |
>>> round(Decimal('123.456'), 2) | |
Decimal('123.46') | |
>>> round(Decimal('123.456'), -2) | |
Decimal('1E+2') | |
>>> round(Decimal('-Infinity'), 37) | |
Decimal('NaN') | |
>>> round(Decimal('sNaN123'), 0) | |
Decimal('NaN123') | |
""" | |
if n is not None: | |
# two-argument form: use the equivalent quantize call | |
if not isinstance(n, int): | |
raise TypeError('Second argument to round should be integral') | |
exp = _dec_from_triple(0, '1', -n) | |
return self.quantize(exp) | |
# one-argument form | |
if self._is_special: | |
if self.is_nan(): | |
raise ValueError("cannot round a NaN") | |
else: | |
raise OverflowError("cannot round an infinity") | |
return int(self._rescale(0, ROUND_HALF_EVEN)) | |
def __floor__(self): | |
"""Return the floor of self, as an integer. | |
For a finite Decimal instance self, return the greatest | |
integer n such that n <= self. If self is infinite or a NaN | |
then a Python exception is raised. | |
""" | |
if self._is_special: | |
if self.is_nan(): | |
raise ValueError("cannot round a NaN") | |
else: | |
raise OverflowError("cannot round an infinity") | |
return int(self._rescale(0, ROUND_FLOOR)) | |
def __ceil__(self): | |
"""Return the ceiling of self, as an integer. | |
For a finite Decimal instance self, return the least integer n | |
such that n >= self. If self is infinite or a NaN then a | |
Python exception is raised. | |
""" | |
if self._is_special: | |
if self.is_nan(): | |
raise ValueError("cannot round a NaN") | |
else: | |
raise OverflowError("cannot round an infinity") | |
return int(self._rescale(0, ROUND_CEILING)) | |
def fma(self, other, third, context=None): | |
"""Fused multiply-add. | |
Returns self*other+third with no rounding of the intermediate | |
product self*other. | |
self and other are multiplied together, with no rounding of | |
the result. The third operand is then added to the result, | |
and a single final rounding is performed. | |
""" | |
other = _convert_other(other, raiseit=True) | |
third = _convert_other(third, raiseit=True) | |
# compute product; raise InvalidOperation if either operand is | |
# a signaling NaN or if the product is zero times infinity. | |
if self._is_special or other._is_special: | |
if context is None: | |
context = getcontext() | |
if self._exp == 'N': | |
return context._raise_error(InvalidOperation, 'sNaN', self) | |
if other._exp == 'N': | |
return context._raise_error(InvalidOperation, 'sNaN', other) | |
if self._exp == 'n': | |
product = self | |
elif other._exp == 'n': | |
product = other | |
elif self._exp == 'F': | |
if not other: | |
return context._raise_error(InvalidOperation, | |
'INF * 0 in fma') | |
product = _SignedInfinity[self._sign ^ other._sign] | |
elif other._exp == 'F': | |
if not self: | |
return context._raise_error(InvalidOperation, | |
'0 * INF in fma') | |
product = _SignedInfinity[self._sign ^ other._sign] | |
else: | |
product = _dec_from_triple(self._sign ^ other._sign, | |
str(int(self._int) * int(other._int)), | |
self._exp + other._exp) | |
return product.__add__(third, context) | |
def _power_modulo(self, other, modulo, context=None): | |
"""Three argument version of __pow__""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
modulo = _convert_other(modulo) | |
if modulo is NotImplemented: | |
return modulo | |
if context is None: | |
context = getcontext() | |
# deal with NaNs: if there are any sNaNs then first one wins, | |
# (i.e. behaviour for NaNs is identical to that of fma) | |
self_is_nan = self._isnan() | |
other_is_nan = other._isnan() | |
modulo_is_nan = modulo._isnan() | |
if self_is_nan or other_is_nan or modulo_is_nan: | |
if self_is_nan == 2: | |
return context._raise_error(InvalidOperation, 'sNaN', | |
self) | |
if other_is_nan == 2: | |
return context._raise_error(InvalidOperation, 'sNaN', | |
other) | |
if modulo_is_nan == 2: | |
return context._raise_error(InvalidOperation, 'sNaN', | |
modulo) | |
if self_is_nan: | |
return self._fix_nan(context) | |
if other_is_nan: | |
return other._fix_nan(context) | |
return modulo._fix_nan(context) | |
# check inputs: we apply same restrictions as Python's pow() | |
if not (self._isinteger() and | |
other._isinteger() and | |
modulo._isinteger()): | |
return context._raise_error(InvalidOperation, | |
'pow() 3rd argument not allowed ' | |
'unless all arguments are integers') | |
if other < 0: | |
return context._raise_error(InvalidOperation, | |
'pow() 2nd argument cannot be ' | |
'negative when 3rd argument specified') | |
if not modulo: | |
return context._raise_error(InvalidOperation, | |
'pow() 3rd argument cannot be 0') | |
# additional restriction for decimal: the modulus must be less | |
# than 10**prec in absolute value | |
if modulo.adjusted() >= context.prec: | |
return context._raise_error(InvalidOperation, | |
'insufficient precision: pow() 3rd ' | |
'argument must not have more than ' | |
'precision digits') | |
# define 0**0 == NaN, for consistency with two-argument pow | |
# (even though it hurts!) | |
if not other and not self: | |
return context._raise_error(InvalidOperation, | |
'at least one of pow() 1st argument ' | |
'and 2nd argument must be nonzero; ' | |
'0**0 is not defined') | |
# compute sign of result | |
if other._iseven(): | |
sign = 0 | |
else: | |
sign = self._sign | |
# convert modulo to a Python integer, and self and other to | |
# Decimal integers (i.e. force their exponents to be >= 0) | |
modulo = abs(int(modulo)) | |
base = _WorkRep(self.to_integral_value()) | |
exponent = _WorkRep(other.to_integral_value()) | |
# compute result using integer pow() | |
base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo | |
for i in range(exponent.exp): | |
base = pow(base, 10, modulo) | |
base = pow(base, exponent.int, modulo) | |
return _dec_from_triple(sign, str(base), 0) | |
def _power_exact(self, other, p): | |
"""Attempt to compute self**other exactly. | |
Given Decimals self and other and an integer p, attempt to | |
compute an exact result for the power self**other, with p | |
digits of precision. Return None if self**other is not | |
exactly representable in p digits. | |
Assumes that elimination of special cases has already been | |
performed: self and other must both be nonspecial; self must | |
be positive and not numerically equal to 1; other must be | |
nonzero. For efficiency, other._exp should not be too large, | |
so that 10**abs(other._exp) is a feasible calculation.""" | |
# In the comments below, we write x for the value of self and y for the | |
# value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc | |
# and yc positive integers not divisible by 10. | |
# The main purpose of this method is to identify the *failure* | |
# of x**y to be exactly representable with as little effort as | |
# possible. So we look for cheap and easy tests that | |
# eliminate the possibility of x**y being exact. Only if all | |
# these tests are passed do we go on to actually compute x**y. | |
# Here's the main idea. Express y as a rational number m/n, with m and | |
# n relatively prime and n>0. Then for x**y to be exactly | |
# representable (at *any* precision), xc must be the nth power of a | |
# positive integer and xe must be divisible by n. If y is negative | |
# then additionally xc must be a power of either 2 or 5, hence a power | |
# of 2**n or 5**n. | |
# | |
# There's a limit to how small |y| can be: if y=m/n as above | |
# then: | |
# | |
# (1) if xc != 1 then for the result to be representable we | |
# need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So | |
# if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <= | |
# 2**(1/|y|), hence xc**|y| < 2 and the result is not | |
# representable. | |
# | |
# (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if | |
# |y| < 1/|xe| then the result is not representable. | |
# | |
# Note that since x is not equal to 1, at least one of (1) and | |
# (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) < | |
# 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye. | |
# | |
# There's also a limit to how large y can be, at least if it's | |
# positive: the normalized result will have coefficient xc**y, | |
# so if it's representable then xc**y < 10**p, and y < | |
# p/log10(xc). Hence if y*log10(xc) >= p then the result is | |
# not exactly representable. | |
# if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye, | |
# so |y| < 1/xe and the result is not representable. | |
# Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y| | |
# < 1/nbits(xc). | |
x = _WorkRep(self) | |
xc, xe = x.int, x.exp | |
while xc % 10 == 0: | |
xc //= 10 | |
xe += 1 | |
y = _WorkRep(other) | |
yc, ye = y.int, y.exp | |
while yc % 10 == 0: | |
yc //= 10 | |
ye += 1 | |
# case where xc == 1: result is 10**(xe*y), with xe*y | |
# required to be an integer | |
if xc == 1: | |
xe *= yc | |
# result is now 10**(xe * 10**ye); xe * 10**ye must be integral | |
while xe % 10 == 0: | |
xe //= 10 | |
ye += 1 | |
if ye < 0: | |
return None | |
exponent = xe * 10**ye | |
if y.sign == 1: | |
exponent = -exponent | |
# if other is a nonnegative integer, use ideal exponent | |
if other._isinteger() and other._sign == 0: | |
ideal_exponent = self._exp*int(other) | |
zeros = min(exponent-ideal_exponent, p-1) | |
else: | |
zeros = 0 | |
return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros) | |
# case where y is negative: xc must be either a power | |
# of 2 or a power of 5. | |
if y.sign == 1: | |
last_digit = xc % 10 | |
if last_digit in (2,4,6,8): | |
# quick test for power of 2 | |
if xc & -xc != xc: | |
return None | |
# now xc is a power of 2; e is its exponent | |
e = _nbits(xc)-1 | |
# We now have: | |
# | |
# x = 2**e * 10**xe, e > 0, and y < 0. | |
# | |
# The exact result is: | |
# | |
# x**y = 5**(-e*y) * 10**(e*y + xe*y) | |
# | |
# provided that both e*y and xe*y are integers. Note that if | |
# 5**(-e*y) >= 10**p, then the result can't be expressed | |
# exactly with p digits of precision. | |
# | |
# Using the above, we can guard against large values of ye. | |
# 93/65 is an upper bound for log(10)/log(5), so if | |
# | |
# ye >= len(str(93*p//65)) | |
# | |
# then | |
# | |
# -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5), | |
# | |
# so 5**(-e*y) >= 10**p, and the coefficient of the result | |
# can't be expressed in p digits. | |
# emax >= largest e such that 5**e < 10**p. | |
emax = p*93//65 | |
if ye >= len(str(emax)): | |
return None | |
# Find -e*y and -xe*y; both must be integers | |
e = _decimal_lshift_exact(e * yc, ye) | |
xe = _decimal_lshift_exact(xe * yc, ye) | |
if e is None or xe is None: | |
return None | |
if e > emax: | |
return None | |
xc = 5**e | |
elif last_digit == 5: | |
# e >= log_5(xc) if xc is a power of 5; we have | |
# equality all the way up to xc=5**2658 | |
e = _nbits(xc)*28//65 | |
xc, remainder = divmod(5**e, xc) | |
if remainder: | |
return None | |
while xc % 5 == 0: | |
xc //= 5 | |
e -= 1 | |
# Guard against large values of ye, using the same logic as in | |
# the 'xc is a power of 2' branch. 10/3 is an upper bound for | |
# log(10)/log(2). | |
emax = p*10//3 | |
if ye >= len(str(emax)): | |
return None | |
e = _decimal_lshift_exact(e * yc, ye) | |
xe = _decimal_lshift_exact(xe * yc, ye) | |
if e is None or xe is None: | |
return None | |
if e > emax: | |
return None | |
xc = 2**e | |
else: | |
return None | |
if xc >= 10**p: | |
return None | |
xe = -e-xe | |
return _dec_from_triple(0, str(xc), xe) | |
# now y is positive; find m and n such that y = m/n | |
if ye >= 0: | |
m, n = yc*10**ye, 1 | |
else: | |
if xe != 0 and len(str(abs(yc*xe))) <= -ye: | |
return None | |
xc_bits = _nbits(xc) | |
if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye: | |
return None | |
m, n = yc, 10**(-ye) | |
while m % 2 == n % 2 == 0: | |
m //= 2 | |
n //= 2 | |
while m % 5 == n % 5 == 0: | |
m //= 5 | |
n //= 5 | |
# compute nth root of xc*10**xe | |
if n > 1: | |
# if 1 < xc < 2**n then xc isn't an nth power | |
if xc != 1 and xc_bits <= n: | |
return None | |
xe, rem = divmod(xe, n) | |
if rem != 0: | |
return None | |
# compute nth root of xc using Newton's method | |
a = 1 << -(-_nbits(xc)//n) # initial estimate | |
while True: | |
q, r = divmod(xc, a**(n-1)) | |
if a <= q: | |
break | |
else: | |
a = (a*(n-1) + q)//n | |
if not (a == q and r == 0): | |
return None | |
xc = a | |
# now xc*10**xe is the nth root of the original xc*10**xe | |
# compute mth power of xc*10**xe | |
# if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m > | |
# 10**p and the result is not representable. | |
if xc > 1 and m > p*100//_log10_lb(xc): | |
return None | |
xc = xc**m | |
xe *= m | |
if xc > 10**p: | |
return None | |
# by this point the result *is* exactly representable | |
# adjust the exponent to get as close as possible to the ideal | |
# exponent, if necessary | |
str_xc = str(xc) | |
if other._isinteger() and other._sign == 0: | |
ideal_exponent = self._exp*int(other) | |
zeros = min(xe-ideal_exponent, p-len(str_xc)) | |
else: | |
zeros = 0 | |
return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros) | |
def __pow__(self, other, modulo=None, context=None): | |
"""Return self ** other [ % modulo]. | |
With two arguments, compute self**other. | |
With three arguments, compute (self**other) % modulo. For the | |
three argument form, the following restrictions on the | |
arguments hold: | |
- all three arguments must be integral | |
- other must be nonnegative | |
- either self or other (or both) must be nonzero | |
- modulo must be nonzero and must have at most p digits, | |
where p is the context precision. | |
If any of these restrictions is violated the InvalidOperation | |
flag is raised. | |
The result of pow(self, other, modulo) is identical to the | |
result that would be obtained by computing (self**other) % | |
modulo with unbounded precision, but is computed more | |
efficiently. It is always exact. | |
""" | |
if modulo is not None: | |
return self._power_modulo(other, modulo, context) | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
if context is None: | |
context = getcontext() | |
# either argument is a NaN => result is NaN | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
# 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity) | |
if not other: | |
if not self: | |
return context._raise_error(InvalidOperation, '0 ** 0') | |
else: | |
return _One | |
# result has sign 1 iff self._sign is 1 and other is an odd integer | |
result_sign = 0 | |
if self._sign == 1: | |
if other._isinteger(): | |
if not other._iseven(): | |
result_sign = 1 | |
else: | |
# -ve**noninteger = NaN | |
# (-0)**noninteger = 0**noninteger | |
if self: | |
return context._raise_error(InvalidOperation, | |
'x ** y with x negative and y not an integer') | |
# negate self, without doing any unwanted rounding | |
self = self.copy_negate() | |
# 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity | |
if not self: | |
if other._sign == 0: | |
return _dec_from_triple(result_sign, '0', 0) | |
else: | |
return _SignedInfinity[result_sign] | |
# Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0 | |
if self._isinfinity(): | |
if other._sign == 0: | |
return _SignedInfinity[result_sign] | |
else: | |
return _dec_from_triple(result_sign, '0', 0) | |
# 1**other = 1, but the choice of exponent and the flags | |
# depend on the exponent of self, and on whether other is a | |
# positive integer, a negative integer, or neither | |
if self == _One: | |
if other._isinteger(): | |
# exp = max(self._exp*max(int(other), 0), | |
# 1-context.prec) but evaluating int(other) directly | |
# is dangerous until we know other is small (other | |
# could be 1e999999999) | |
if other._sign == 1: | |
multiplier = 0 | |
elif other > context.prec: | |
multiplier = context.prec | |
else: | |
multiplier = int(other) | |
exp = self._exp * multiplier | |
if exp < 1-context.prec: | |
exp = 1-context.prec | |
context._raise_error(Rounded) | |
else: | |
context._raise_error(Inexact) | |
context._raise_error(Rounded) | |
exp = 1-context.prec | |
return _dec_from_triple(result_sign, '1'+'0'*-exp, exp) | |
# compute adjusted exponent of self | |
self_adj = self.adjusted() | |
# self ** infinity is infinity if self > 1, 0 if self < 1 | |
# self ** -infinity is infinity if self < 1, 0 if self > 1 | |
if other._isinfinity(): | |
if (other._sign == 0) == (self_adj < 0): | |
return _dec_from_triple(result_sign, '0', 0) | |
else: | |
return _SignedInfinity[result_sign] | |
# from here on, the result always goes through the call | |
# to _fix at the end of this function. | |
ans = None | |
exact = False | |
# crude test to catch cases of extreme overflow/underflow. If | |
# log10(self)*other >= 10**bound and bound >= len(str(Emax)) | |
# then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence | |
# self**other >= 10**(Emax+1), so overflow occurs. The test | |
# for underflow is similar. | |
bound = self._log10_exp_bound() + other.adjusted() | |
if (self_adj >= 0) == (other._sign == 0): | |
# self > 1 and other +ve, or self < 1 and other -ve | |
# possibility of overflow | |
if bound >= len(str(context.Emax)): | |
ans = _dec_from_triple(result_sign, '1', context.Emax+1) | |
else: | |
# self > 1 and other -ve, or self < 1 and other +ve | |
# possibility of underflow to 0 | |
Etiny = context.Etiny() | |
if bound >= len(str(-Etiny)): | |
ans = _dec_from_triple(result_sign, '1', Etiny-1) | |
# try for an exact result with precision +1 | |
if ans is None: | |
ans = self._power_exact(other, context.prec + 1) | |
if ans is not None: | |
if result_sign == 1: | |
ans = _dec_from_triple(1, ans._int, ans._exp) | |
exact = True | |
# usual case: inexact result, x**y computed directly as exp(y*log(x)) | |
if ans is None: | |
p = context.prec | |
x = _WorkRep(self) | |
xc, xe = x.int, x.exp | |
y = _WorkRep(other) | |
yc, ye = y.int, y.exp | |
if y.sign == 1: | |
yc = -yc | |
# compute correctly rounded result: start with precision +3, | |
# then increase precision until result is unambiguously roundable | |
extra = 3 | |
while True: | |
coeff, exp = _dpower(xc, xe, yc, ye, p+extra) | |
if coeff % (5*10**(len(str(coeff))-p-1)): | |
break | |
extra += 3 | |
ans = _dec_from_triple(result_sign, str(coeff), exp) | |
# unlike exp, ln and log10, the power function respects the | |
# rounding mode; no need to switch to ROUND_HALF_EVEN here | |
# There's a difficulty here when 'other' is not an integer and | |
# the result is exact. In this case, the specification | |
# requires that the Inexact flag be raised (in spite of | |
# exactness), but since the result is exact _fix won't do this | |
# for us. (Correspondingly, the Underflow signal should also | |
# be raised for subnormal results.) We can't directly raise | |
# these signals either before or after calling _fix, since | |
# that would violate the precedence for signals. So we wrap | |
# the ._fix call in a temporary context, and reraise | |
# afterwards. | |
if exact and not other._isinteger(): | |
# pad with zeros up to length context.prec+1 if necessary; this | |
# ensures that the Rounded signal will be raised. | |
if len(ans._int) <= context.prec: | |
expdiff = context.prec + 1 - len(ans._int) | |
ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff, | |
ans._exp-expdiff) | |
# create a copy of the current context, with cleared flags/traps | |
newcontext = context.copy() | |
newcontext.clear_flags() | |
for exception in _signals: | |
newcontext.traps[exception] = 0 | |
# round in the new context | |
ans = ans._fix(newcontext) | |
# raise Inexact, and if necessary, Underflow | |
newcontext._raise_error(Inexact) | |
if newcontext.flags[Subnormal]: | |
newcontext._raise_error(Underflow) | |
# propagate signals to the original context; _fix could | |
# have raised any of Overflow, Underflow, Subnormal, | |
# Inexact, Rounded, Clamped. Overflow needs the correct | |
# arguments. Note that the order of the exceptions is | |
# important here. | |
if newcontext.flags[Overflow]: | |
context._raise_error(Overflow, 'above Emax', ans._sign) | |
for exception in Underflow, Subnormal, Inexact, Rounded, Clamped: | |
if newcontext.flags[exception]: | |
context._raise_error(exception) | |
else: | |
ans = ans._fix(context) | |
return ans | |
def __rpow__(self, other, context=None): | |
"""Swaps self/other and returns __pow__.""" | |
other = _convert_other(other) | |
if other is NotImplemented: | |
return other | |
return other.__pow__(self, context=context) | |
def normalize(self, context=None): | |
"""Normalize- strip trailing 0s, change anything equal to 0 to 0e0""" | |
if context is None: | |
context = getcontext() | |
if self._is_special: | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
dup = self._fix(context) | |
if dup._isinfinity(): | |
return dup | |
if not dup: | |
return _dec_from_triple(dup._sign, '0', 0) | |
exp_max = [context.Emax, context.Etop()][context.clamp] | |
end = len(dup._int) | |
exp = dup._exp | |
while dup._int[end-1] == '0' and exp < exp_max: | |
exp += 1 | |
end -= 1 | |
return _dec_from_triple(dup._sign, dup._int[:end], exp) | |
def quantize(self, exp, rounding=None, context=None): | |
"""Quantize self so its exponent is the same as that of exp. | |
Similar to self._rescale(exp._exp) but with error checking. | |
""" | |
exp = _convert_other(exp, raiseit=True) | |
if context is None: | |
context = getcontext() | |
if rounding is None: | |
rounding = context.rounding | |
if self._is_special or exp._is_special: | |
ans = self._check_nans(exp, context) | |
if ans: | |
return ans | |
if exp._isinfinity() or self._isinfinity(): | |
if exp._isinfinity() and self._isinfinity(): | |
return Decimal(self) # if both are inf, it is OK | |
return context._raise_error(InvalidOperation, | |
'quantize with one INF') | |
# exp._exp should be between Etiny and Emax | |
if not (context.Etiny() <= exp._exp <= context.Emax): | |
return context._raise_error(InvalidOperation, | |
'target exponent out of bounds in quantize') | |
if not self: | |
ans = _dec_from_triple(self._sign, '0', exp._exp) | |
return ans._fix(context) | |
self_adjusted = self.adjusted() | |
if self_adjusted > context.Emax: | |
return context._raise_error(InvalidOperation, | |
'exponent of quantize result too large for current context') | |
if self_adjusted - exp._exp + 1 > context.prec: | |
return context._raise_error(InvalidOperation, | |
'quantize result has too many digits for current context') | |
ans = self._rescale(exp._exp, rounding) | |
if ans.adjusted() > context.Emax: | |
return context._raise_error(InvalidOperation, | |
'exponent of quantize result too large for current context') | |
if len(ans._int) > context.prec: | |
return context._raise_error(InvalidOperation, | |
'quantize result has too many digits for current context') | |
# raise appropriate flags | |
if ans and ans.adjusted() < context.Emin: | |
context._raise_error(Subnormal) | |
if ans._exp > self._exp: | |
if ans != self: | |
context._raise_error(Inexact) | |
context._raise_error(Rounded) | |
# call to fix takes care of any necessary folddown, and | |
# signals Clamped if necessary | |
ans = ans._fix(context) | |
return ans | |
def same_quantum(self, other, context=None): | |
"""Return True if self and other have the same exponent; otherwise | |
return False. | |
If either operand is a special value, the following rules are used: | |
* return True if both operands are infinities | |
* return True if both operands are NaNs | |
* otherwise, return False. | |
""" | |
other = _convert_other(other, raiseit=True) | |
if self._is_special or other._is_special: | |
return (self.is_nan() and other.is_nan() or | |
self.is_infinite() and other.is_infinite()) | |
return self._exp == other._exp | |
def _rescale(self, exp, rounding): | |
"""Rescale self so that the exponent is exp, either by padding with zeros | |
or by truncating digits, using the given rounding mode. | |
Specials are returned without change. This operation is | |
quiet: it raises no flags, and uses no information from the | |
context. | |
exp = exp to scale to (an integer) | |
rounding = rounding mode | |
""" | |
if self._is_special: | |
return Decimal(self) | |
if not self: | |
return _dec_from_triple(self._sign, '0', exp) | |
if self._exp >= exp: | |
# pad answer with zeros if necessary | |
return _dec_from_triple(self._sign, | |
self._int + '0'*(self._exp - exp), exp) | |
# too many digits; round and lose data. If self.adjusted() < | |
# exp-1, replace self by 10**(exp-1) before rounding | |
digits = len(self._int) + self._exp - exp | |
if digits < 0: | |
self = _dec_from_triple(self._sign, '1', exp-1) | |
digits = 0 | |
this_function = self._pick_rounding_function[rounding] | |
changed = this_function(self, digits) | |
coeff = self._int[:digits] or '0' | |
if changed == 1: | |
coeff = str(int(coeff)+1) | |
return _dec_from_triple(self._sign, coeff, exp) | |
def _round(self, places, rounding): | |
"""Round a nonzero, nonspecial Decimal to a fixed number of | |
significant figures, using the given rounding mode. | |
Infinities, NaNs and zeros are returned unaltered. | |
This operation is quiet: it raises no flags, and uses no | |
information from the context. | |
""" | |
if places <= 0: | |
raise ValueError("argument should be at least 1 in _round") | |
if self._is_special or not self: | |
return Decimal(self) | |
ans = self._rescale(self.adjusted()+1-places, rounding) | |
# it can happen that the rescale alters the adjusted exponent; | |
# for example when rounding 99.97 to 3 significant figures. | |
# When this happens we end up with an extra 0 at the end of | |
# the number; a second rescale fixes this. | |
if ans.adjusted() != self.adjusted(): | |
ans = ans._rescale(ans.adjusted()+1-places, rounding) | |
return ans | |
def to_integral_exact(self, rounding=None, context=None): | |
"""Rounds to a nearby integer. | |
If no rounding mode is specified, take the rounding mode from | |
the context. This method raises the Rounded and Inexact flags | |
when appropriate. | |
See also: to_integral_value, which does exactly the same as | |
this method except that it doesn't raise Inexact or Rounded. | |
""" | |
if self._is_special: | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
return Decimal(self) | |
if self._exp >= 0: | |
return Decimal(self) | |
if not self: | |
return _dec_from_triple(self._sign, '0', 0) | |
if context is None: | |
context = getcontext() | |
if rounding is None: | |
rounding = context.rounding | |
ans = self._rescale(0, rounding) | |
if ans != self: | |
context._raise_error(Inexact) | |
context._raise_error(Rounded) | |
return ans | |
def to_integral_value(self, rounding=None, context=None): | |
"""Rounds to the nearest integer, without raising inexact, rounded.""" | |
if context is None: | |
context = getcontext() | |
if rounding is None: | |
rounding = context.rounding | |
if self._is_special: | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
return Decimal(self) | |
if self._exp >= 0: | |
return Decimal(self) | |
else: | |
return self._rescale(0, rounding) | |
# the method name changed, but we provide also the old one, for compatibility | |
to_integral = to_integral_value | |
def sqrt(self, context=None): | |
"""Return the square root of self.""" | |
if context is None: | |
context = getcontext() | |
if self._is_special: | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
if self._isinfinity() and self._sign == 0: | |
return Decimal(self) | |
if not self: | |
# exponent = self._exp // 2. sqrt(-0) = -0 | |
ans = _dec_from_triple(self._sign, '0', self._exp // 2) | |
return ans._fix(context) | |
if self._sign == 1: | |
return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0') | |
# At this point self represents a positive number. Let p be | |
# the desired precision and express self in the form c*100**e | |
# with c a positive real number and e an integer, c and e | |
# being chosen so that 100**(p-1) <= c < 100**p. Then the | |
# (exact) square root of self is sqrt(c)*10**e, and 10**(p-1) | |
# <= sqrt(c) < 10**p, so the closest representable Decimal at | |
# precision p is n*10**e where n = round_half_even(sqrt(c)), | |
# the closest integer to sqrt(c) with the even integer chosen | |
# in the case of a tie. | |
# | |
# To ensure correct rounding in all cases, we use the | |
# following trick: we compute the square root to an extra | |
# place (precision p+1 instead of precision p), rounding down. | |
# Then, if the result is inexact and its last digit is 0 or 5, | |
# we increase the last digit to 1 or 6 respectively; if it's | |
# exact we leave the last digit alone. Now the final round to | |
# p places (or fewer in the case of underflow) will round | |
# correctly and raise the appropriate flags. | |
# use an extra digit of precision | |
prec = context.prec+1 | |
# write argument in the form c*100**e where e = self._exp//2 | |
# is the 'ideal' exponent, to be used if the square root is | |
# exactly representable. l is the number of 'digits' of c in | |
# base 100, so that 100**(l-1) <= c < 100**l. | |
op = _WorkRep(self) | |
e = op.exp >> 1 | |
if op.exp & 1: | |
c = op.int * 10 | |
l = (len(self._int) >> 1) + 1 | |
else: | |
c = op.int | |
l = len(self._int)+1 >> 1 | |
# rescale so that c has exactly prec base 100 'digits' | |
shift = prec-l | |
if shift >= 0: | |
c *= 100**shift | |
exact = True | |
else: | |
c, remainder = divmod(c, 100**-shift) | |
exact = not remainder | |
e -= shift | |
# find n = floor(sqrt(c)) using Newton's method | |
n = 10**prec | |
while True: | |
q = c//n | |
if n <= q: | |
break | |
else: | |
n = n + q >> 1 | |
exact = exact and n*n == c | |
if exact: | |
# result is exact; rescale to use ideal exponent e | |
if shift >= 0: | |
# assert n % 10**shift == 0 | |
n //= 10**shift | |
else: | |
n *= 10**-shift | |
e += shift | |
else: | |
# result is not exact; fix last digit as described above | |
if n % 5 == 0: | |
n += 1 | |
ans = _dec_from_triple(0, str(n), e) | |
# round, and fit to current context | |
context = context._shallow_copy() | |
rounding = context._set_rounding(ROUND_HALF_EVEN) | |
ans = ans._fix(context) | |
context.rounding = rounding | |
return ans | |
def max(self, other, context=None): | |
"""Returns the larger value. | |
Like max(self, other) except if one is not a number, returns | |
NaN (and signals if one is sNaN). Also rounds. | |
""" | |
other = _convert_other(other, raiseit=True) | |
if context is None: | |
context = getcontext() | |
if self._is_special or other._is_special: | |
# If one operand is a quiet NaN and the other is number, then the | |
# number is always returned | |
sn = self._isnan() | |
on = other._isnan() | |
if sn or on: | |
if on == 1 and sn == 0: | |
return self._fix(context) | |
if sn == 1 and on == 0: | |
return other._fix(context) | |
return self._check_nans(other, context) | |
c = self._cmp(other) | |
if c == 0: | |
# If both operands are finite and equal in numerical value | |
# then an ordering is applied: | |
# | |
# If the signs differ then max returns the operand with the | |
# positive sign and min returns the operand with the negative sign | |
# | |
# If the signs are the same then the exponent is used to select | |
# the result. This is exactly the ordering used in compare_total. | |
c = self.compare_total(other) | |
if c == -1: | |
ans = other | |
else: | |
ans = self | |
return ans._fix(context) | |
def min(self, other, context=None): | |
"""Returns the smaller value. | |
Like min(self, other) except if one is not a number, returns | |
NaN (and signals if one is sNaN). Also rounds. | |
""" | |
other = _convert_other(other, raiseit=True) | |
if context is None: | |
context = getcontext() | |
if self._is_special or other._is_special: | |
# If one operand is a quiet NaN and the other is number, then the | |
# number is always returned | |
sn = self._isnan() | |
on = other._isnan() | |
if sn or on: | |
if on == 1 and sn == 0: | |
return self._fix(context) | |
if sn == 1 and on == 0: | |
return other._fix(context) | |
return self._check_nans(other, context) | |
c = self._cmp(other) | |
if c == 0: | |
c = self.compare_total(other) | |
if c == -1: | |
ans = self | |
else: | |
ans = other | |
return ans._fix(context) | |
def _isinteger(self): | |
"""Returns whether self is an integer""" | |
if self._is_special: | |
return False | |
if self._exp >= 0: | |
return True | |
rest = self._int[self._exp:] | |
return rest == '0'*len(rest) | |
def _iseven(self): | |
"""Returns True if self is even. Assumes self is an integer.""" | |
if not self or self._exp > 0: | |
return True | |
return self._int[-1+self._exp] in '02468' | |
def adjusted(self): | |
"""Return the adjusted exponent of self""" | |
try: | |
return self._exp + len(self._int) - 1 | |
# If NaN or Infinity, self._exp is string | |
except TypeError: | |
return 0 | |
def canonical(self): | |
"""Returns the same Decimal object. | |
As we do not have different encodings for the same number, the | |
received object already is in its canonical form. | |
""" | |
return self | |
def compare_signal(self, other, context=None): | |
"""Compares self to the other operand numerically. | |
It's pretty much like compare(), but all NaNs signal, with signaling | |
NaNs taking precedence over quiet NaNs. | |
""" | |
other = _convert_other(other, raiseit = True) | |
ans = self._compare_check_nans(other, context) | |
if ans: | |
return ans | |
return self.compare(other, context=context) | |
def compare_total(self, other, context=None): | |
"""Compares self to other using the abstract representations. | |
This is not like the standard compare, which use their numerical | |
value. Note that a total ordering is defined for all possible abstract | |
representations. | |
""" | |
other = _convert_other(other, raiseit=True) | |
# if one is negative and the other is positive, it's easy | |
if self._sign and not other._sign: | |
return _NegativeOne | |
if not self._sign and other._sign: | |
return _One | |
sign = self._sign | |
# let's handle both NaN types | |
self_nan = self._isnan() | |
other_nan = other._isnan() | |
if self_nan or other_nan: | |
if self_nan == other_nan: | |
# compare payloads as though they're integers | |
self_key = len(self._int), self._int | |
other_key = len(other._int), other._int | |
if self_key < other_key: | |
if sign: | |
return _One | |
else: | |
return _NegativeOne | |
if self_key > other_key: | |
if sign: | |
return _NegativeOne | |
else: | |
return _One | |
return _Zero | |
if sign: | |
if self_nan == 1: | |
return _NegativeOne | |
if other_nan == 1: | |
return _One | |
if self_nan == 2: | |
return _NegativeOne | |
if other_nan == 2: | |
return _One | |
else: | |
if self_nan == 1: | |
return _One | |
if other_nan == 1: | |
return _NegativeOne | |
if self_nan == 2: | |
return _One | |
if other_nan == 2: | |
return _NegativeOne | |
if self < other: | |
return _NegativeOne | |
if self > other: | |
return _One | |
if self._exp < other._exp: | |
if sign: | |
return _One | |
else: | |
return _NegativeOne | |
if self._exp > other._exp: | |
if sign: | |
return _NegativeOne | |
else: | |
return _One | |
return _Zero | |
def compare_total_mag(self, other, context=None): | |
"""Compares self to other using abstract repr., ignoring sign. | |
Like compare_total, but with operand's sign ignored and assumed to be 0. | |
""" | |
other = _convert_other(other, raiseit=True) | |
s = self.copy_abs() | |
o = other.copy_abs() | |
return s.compare_total(o) | |
def copy_abs(self): | |
"""Returns a copy with the sign set to 0. """ | |
return _dec_from_triple(0, self._int, self._exp, self._is_special) | |
def copy_negate(self): | |
"""Returns a copy with the sign inverted.""" | |
if self._sign: | |
return _dec_from_triple(0, self._int, self._exp, self._is_special) | |
else: | |
return _dec_from_triple(1, self._int, self._exp, self._is_special) | |
def copy_sign(self, other, context=None): | |
"""Returns self with the sign of other.""" | |
other = _convert_other(other, raiseit=True) | |
return _dec_from_triple(other._sign, self._int, | |
self._exp, self._is_special) | |
def exp(self, context=None): | |
"""Returns e ** self.""" | |
if context is None: | |
context = getcontext() | |
# exp(NaN) = NaN | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
# exp(-Infinity) = 0 | |
if self._isinfinity() == -1: | |
return _Zero | |
# exp(0) = 1 | |
if not self: | |
return _One | |
# exp(Infinity) = Infinity | |
if self._isinfinity() == 1: | |
return Decimal(self) | |
# the result is now guaranteed to be inexact (the true | |
# mathematical result is transcendental). There's no need to | |
# raise Rounded and Inexact here---they'll always be raised as | |
# a result of the call to _fix. | |
p = context.prec | |
adj = self.adjusted() | |
# we only need to do any computation for quite a small range | |
# of adjusted exponents---for example, -29 <= adj <= 10 for | |
# the default context. For smaller exponent the result is | |
# indistinguishable from 1 at the given precision, while for | |
# larger exponent the result either overflows or underflows. | |
if self._sign == 0 and adj > len(str((context.Emax+1)*3)): | |
# overflow | |
ans = _dec_from_triple(0, '1', context.Emax+1) | |
elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)): | |
# underflow to 0 | |
ans = _dec_from_triple(0, '1', context.Etiny()-1) | |
elif self._sign == 0 and adj < -p: | |
# p+1 digits; final round will raise correct flags | |
ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p) | |
elif self._sign == 1 and adj < -p-1: | |
# p+1 digits; final round will raise correct flags | |
ans = _dec_from_triple(0, '9'*(p+1), -p-1) | |
# general case | |
else: | |
op = _WorkRep(self) | |
c, e = op.int, op.exp | |
if op.sign == 1: | |
c = -c | |
# compute correctly rounded result: increase precision by | |
# 3 digits at a time until we get an unambiguously | |
# roundable result | |
extra = 3 | |
while True: | |
coeff, exp = _dexp(c, e, p+extra) | |
if coeff % (5*10**(len(str(coeff))-p-1)): | |
break | |
extra += 3 | |
ans = _dec_from_triple(0, str(coeff), exp) | |
# at this stage, ans should round correctly with *any* | |
# rounding mode, not just with ROUND_HALF_EVEN | |
context = context._shallow_copy() | |
rounding = context._set_rounding(ROUND_HALF_EVEN) | |
ans = ans._fix(context) | |
context.rounding = rounding | |
return ans | |
def is_canonical(self): | |
"""Return True if self is canonical; otherwise return False. | |
Currently, the encoding of a Decimal instance is always | |
canonical, so this method returns True for any Decimal. | |
""" | |
return True | |
def is_finite(self): | |
"""Return True if self is finite; otherwise return False. | |
A Decimal instance is considered finite if it is neither | |
infinite nor a NaN. | |
""" | |
return not self._is_special | |
def is_infinite(self): | |
"""Return True if self is infinite; otherwise return False.""" | |
return self._exp == 'F' | |
def is_nan(self): | |
"""Return True if self is a qNaN or sNaN; otherwise return False.""" | |
return self._exp in ('n', 'N') | |
def is_normal(self, context=None): | |
"""Return True if self is a normal number; otherwise return False.""" | |
if self._is_special or not self: | |
return False | |
if context is None: | |
context = getcontext() | |
return context.Emin <= self.adjusted() | |
def is_qnan(self): | |
"""Return True if self is a quiet NaN; otherwise return False.""" | |
return self._exp == 'n' | |
def is_signed(self): | |
"""Return True if self is negative; otherwise return False.""" | |
return self._sign == 1 | |
def is_snan(self): | |
"""Return True if self is a signaling NaN; otherwise return False.""" | |
return self._exp == 'N' | |
def is_subnormal(self, context=None): | |
"""Return True if self is subnormal; otherwise return False.""" | |
if self._is_special or not self: | |
return False | |
if context is None: | |
context = getcontext() | |
return self.adjusted() < context.Emin | |
def is_zero(self): | |
"""Return True if self is a zero; otherwise return False.""" | |
return not self._is_special and self._int == '0' | |
def _ln_exp_bound(self): | |
"""Compute a lower bound for the adjusted exponent of self.ln(). | |
In other words, compute r such that self.ln() >= 10**r. Assumes | |
that self is finite and positive and that self != 1. | |
""" | |
# for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1 | |
adj = self._exp + len(self._int) - 1 | |
if adj >= 1: | |
# argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10) | |
return len(str(adj*23//10)) - 1 | |
if adj <= -2: | |
# argument <= 0.1 | |
return len(str((-1-adj)*23//10)) - 1 | |
op = _WorkRep(self) | |
c, e = op.int, op.exp | |
if adj == 0: | |
# 1 < self < 10 | |
num = str(c-10**-e) | |
den = str(c) | |
return len(num) - len(den) - (num < den) | |
# adj == -1, 0.1 <= self < 1 | |
return e + len(str(10**-e - c)) - 1 | |
def ln(self, context=None): | |
"""Returns the natural (base e) logarithm of self.""" | |
if context is None: | |
context = getcontext() | |
# ln(NaN) = NaN | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
# ln(0.0) == -Infinity | |
if not self: | |
return _NegativeInfinity | |
# ln(Infinity) = Infinity | |
if self._isinfinity() == 1: | |
return _Infinity | |
# ln(1.0) == 0.0 | |
if self == _One: | |
return _Zero | |
# ln(negative) raises InvalidOperation | |
if self._sign == 1: | |
return context._raise_error(InvalidOperation, | |
'ln of a negative value') | |
# result is irrational, so necessarily inexact | |
op = _WorkRep(self) | |
c, e = op.int, op.exp | |
p = context.prec | |
# correctly rounded result: repeatedly increase precision by 3 | |
# until we get an unambiguously roundable result | |
places = p - self._ln_exp_bound() + 2 # at least p+3 places | |
while True: | |
coeff = _dlog(c, e, places) | |
# assert len(str(abs(coeff)))-p >= 1 | |
if coeff % (5*10**(len(str(abs(coeff)))-p-1)): | |
break | |
places += 3 | |
ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) | |
context = context._shallow_copy() | |
rounding = context._set_rounding(ROUND_HALF_EVEN) | |
ans = ans._fix(context) | |
context.rounding = rounding | |
return ans | |
def _log10_exp_bound(self): | |
"""Compute a lower bound for the adjusted exponent of self.log10(). | |
In other words, find r such that self.log10() >= 10**r. | |
Assumes that self is finite and positive and that self != 1. | |
""" | |
# For x >= 10 or x < 0.1 we only need a bound on the integer | |
# part of log10(self), and this comes directly from the | |
# exponent of x. For 0.1 <= x <= 10 we use the inequalities | |
# 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| > | |
# (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0 | |
adj = self._exp + len(self._int) - 1 | |
if adj >= 1: | |
# self >= 10 | |
return len(str(adj))-1 | |
if adj <= -2: | |
# self < 0.1 | |
return len(str(-1-adj))-1 | |
op = _WorkRep(self) | |
c, e = op.int, op.exp | |
if adj == 0: | |
# 1 < self < 10 | |
num = str(c-10**-e) | |
den = str(231*c) | |
return len(num) - len(den) - (num < den) + 2 | |
# adj == -1, 0.1 <= self < 1 | |
num = str(10**-e-c) | |
return len(num) + e - (num < "231") - 1 | |
def log10(self, context=None): | |
"""Returns the base 10 logarithm of self.""" | |
if context is None: | |
context = getcontext() | |
# log10(NaN) = NaN | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
# log10(0.0) == -Infinity | |
if not self: | |
return _NegativeInfinity | |
# log10(Infinity) = Infinity | |
if self._isinfinity() == 1: | |
return _Infinity | |
# log10(negative or -Infinity) raises InvalidOperation | |
if self._sign == 1: | |
return context._raise_error(InvalidOperation, | |
'log10 of a negative value') | |
# log10(10**n) = n | |
if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1): | |
# answer may need rounding | |
ans = Decimal(self._exp + len(self._int) - 1) | |
else: | |
# result is irrational, so necessarily inexact | |
op = _WorkRep(self) | |
c, e = op.int, op.exp | |
p = context.prec | |
# correctly rounded result: repeatedly increase precision | |
# until result is unambiguously roundable | |
places = p-self._log10_exp_bound()+2 | |
while True: | |
coeff = _dlog10(c, e, places) | |
# assert len(str(abs(coeff)))-p >= 1 | |
if coeff % (5*10**(len(str(abs(coeff)))-p-1)): | |
break | |
places += 3 | |
ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) | |
context = context._shallow_copy() | |
rounding = context._set_rounding(ROUND_HALF_EVEN) | |
ans = ans._fix(context) | |
context.rounding = rounding | |
return ans | |
def logb(self, context=None): | |
""" Returns the exponent of the magnitude of self's MSD. | |
The result is the integer which is the exponent of the magnitude | |
of the most significant digit of self (as though it were truncated | |
to a single digit while maintaining the value of that digit and | |
without limiting the resulting exponent). | |
""" | |
# logb(NaN) = NaN | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
if context is None: | |
context = getcontext() | |
# logb(+/-Inf) = +Inf | |
if self._isinfinity(): | |
return _Infinity | |
# logb(0) = -Inf, DivisionByZero | |
if not self: | |
return context._raise_error(DivisionByZero, 'logb(0)', 1) | |
# otherwise, simply return the adjusted exponent of self, as a | |
# Decimal. Note that no attempt is made to fit the result | |
# into the current context. | |
ans = Decimal(self.adjusted()) | |
return ans._fix(context) | |
def _islogical(self): | |
"""Return True if self is a logical operand. | |
For being logical, it must be a finite number with a sign of 0, | |
an exponent of 0, and a coefficient whose digits must all be | |
either 0 or 1. | |
""" | |
if self._sign != 0 or self._exp != 0: | |
return False | |
for dig in self._int: | |
if dig not in '01': | |
return False | |
return True | |
def _fill_logical(self, context, opa, opb): | |
dif = context.prec - len(opa) | |
if dif > 0: | |
opa = '0'*dif + opa | |
elif dif < 0: | |
opa = opa[-context.prec:] | |
dif = context.prec - len(opb) | |
if dif > 0: | |
opb = '0'*dif + opb | |
elif dif < 0: | |
opb = opb[-context.prec:] | |
return opa, opb | |
def logical_and(self, other, context=None): | |
"""Applies an 'and' operation between self and other's digits.""" | |
if context is None: | |
context = getcontext() | |
other = _convert_other(other, raiseit=True) | |
if not self._islogical() or not other._islogical(): | |
return context._raise_error(InvalidOperation) | |
# fill to context.prec | |
(opa, opb) = self._fill_logical(context, self._int, other._int) | |
# make the operation, and clean starting zeroes | |
result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)]) | |
return _dec_from_triple(0, result.lstrip('0') or '0', 0) | |
def logical_invert(self, context=None): | |
"""Invert all its digits.""" | |
if context is None: | |
context = getcontext() | |
return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0), | |
context) | |
def logical_or(self, other, context=None): | |
"""Applies an 'or' operation between self and other's digits.""" | |
if context is None: | |
context = getcontext() | |
other = _convert_other(other, raiseit=True) | |
if not self._islogical() or not other._islogical(): | |
return context._raise_error(InvalidOperation) | |
# fill to context.prec | |
(opa, opb) = self._fill_logical(context, self._int, other._int) | |
# make the operation, and clean starting zeroes | |
result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)]) | |
return _dec_from_triple(0, result.lstrip('0') or '0', 0) | |
def logical_xor(self, other, context=None): | |
"""Applies an 'xor' operation between self and other's digits.""" | |
if context is None: | |
context = getcontext() | |
other = _convert_other(other, raiseit=True) | |
if not self._islogical() or not other._islogical(): | |
return context._raise_error(InvalidOperation) | |
# fill to context.prec | |
(opa, opb) = self._fill_logical(context, self._int, other._int) | |
# make the operation, and clean starting zeroes | |
result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)]) | |
return _dec_from_triple(0, result.lstrip('0') or '0', 0) | |
def max_mag(self, other, context=None): | |
"""Compares the values numerically with their sign ignored.""" | |
other = _convert_other(other, raiseit=True) | |
if context is None: | |
context = getcontext() | |
if self._is_special or other._is_special: | |
# If one operand is a quiet NaN and the other is number, then the | |
# number is always returned | |
sn = self._isnan() | |
on = other._isnan() | |
if sn or on: | |
if on == 1 and sn == 0: | |
return self._fix(context) | |
if sn == 1 and on == 0: | |
return other._fix(context) | |
return self._check_nans(other, context) | |
c = self.copy_abs()._cmp(other.copy_abs()) | |
if c == 0: | |
c = self.compare_total(other) | |
if c == -1: | |
ans = other | |
else: | |
ans = self | |
return ans._fix(context) | |
def min_mag(self, other, context=None): | |
"""Compares the values numerically with their sign ignored.""" | |
other = _convert_other(other, raiseit=True) | |
if context is None: | |
context = getcontext() | |
if self._is_special or other._is_special: | |
# If one operand is a quiet NaN and the other is number, then the | |
# number is always returned | |
sn = self._isnan() | |
on = other._isnan() | |
if sn or on: | |
if on == 1 and sn == 0: | |
return self._fix(context) | |
if sn == 1 and on == 0: | |
return other._fix(context) | |
return self._check_nans(other, context) | |
c = self.copy_abs()._cmp(other.copy_abs()) | |
if c == 0: | |
c = self.compare_total(other) | |
if c == -1: | |
ans = self | |
else: | |
ans = other | |
return ans._fix(context) | |
def next_minus(self, context=None): | |
"""Returns the largest representable number smaller than itself.""" | |
if context is None: | |
context = getcontext() | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
if self._isinfinity() == -1: | |
return _NegativeInfinity | |
if self._isinfinity() == 1: | |
return _dec_from_triple(0, '9'*context.prec, context.Etop()) | |
context = context.copy() | |
context._set_rounding(ROUND_FLOOR) | |
context._ignore_all_flags() | |
new_self = self._fix(context) | |
if new_self != self: | |
return new_self | |
return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1), | |
context) | |
def next_plus(self, context=None): | |
"""Returns the smallest representable number larger than itself.""" | |
if context is None: | |
context = getcontext() | |
ans = self._check_nans(context=context) | |
if ans: | |
return ans | |
if self._isinfinity() == 1: | |
return _Infinity | |
if self._isinfinity() == -1: | |
return _dec_from_triple(1, '9'*context.prec, context.Etop()) | |
context = context.copy() | |
context._set_rounding(ROUND_CEILING) | |
context._ignore_all_flags() | |
new_self = self._fix(context) | |
if new_self != self: | |
return new_self | |
return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1), | |
context) | |
def next_toward(self, other, context=None): | |
"""Returns the number closest to self, in the direction towards other. | |
The result is the closest representable number to self | |
(excluding self) that is in the direction towards other, | |
unless both have the same value. If the two operands are | |
numerically equal, then the result is a copy of self with the | |
sign set to be the same as the sign of other. | |
""" | |
other = _convert_other(other, raiseit=True) | |
if context is None: | |
context = getcontext() | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
comparison = self._cmp(other) | |
if comparison == 0: | |
return self.copy_sign(other) | |
if comparison == -1: | |
ans = self.next_plus(context) | |
else: # comparison == 1 | |
ans = self.next_minus(context) | |
# decide which flags to raise using value of ans | |
if ans._isinfinity(): | |
context._raise_error(Overflow, | |
'Infinite result from next_toward', | |
ans._sign) | |
context._raise_error(Inexact) | |
context._raise_error(Rounded) | |
elif ans.adjusted() < context.Emin: | |
context._raise_error(Underflow) | |
context._raise_error(Subnormal) | |
context._raise_error(Inexact) | |
context._raise_error(Rounded) | |
# if precision == 1 then we don't raise Clamped for a | |
# result 0E-Etiny. | |
if not ans: | |
context._raise_error(Clamped) | |
return ans | |
def number_class(self, context=None): | |
"""Returns an indication of the class of self. | |
The class is one of the following strings: | |
sNaN | |
NaN | |
-Infinity | |
-Normal | |
-Subnormal | |
-Zero | |
+Zero | |
+Subnormal | |
+Normal | |
+Infinity | |
""" | |
if self.is_snan(): | |
return "sNaN" | |
if self.is_qnan(): | |
return "NaN" | |
inf = self._isinfinity() | |
if inf == 1: | |
return "+Infinity" | |
if inf == -1: | |
return "-Infinity" | |
if self.is_zero(): | |
if self._sign: | |
return "-Zero" | |
else: | |
return "+Zero" | |
if context is None: | |
context = getcontext() | |
if self.is_subnormal(context=context): | |
if self._sign: | |
return "-Subnormal" | |
else: | |
return "+Subnormal" | |
# just a normal, regular, boring number, :) | |
if self._sign: | |
return "-Normal" | |
else: | |
return "+Normal" | |
def radix(self): | |
"""Just returns 10, as this is Decimal, :)""" | |
return Decimal(10) | |
def rotate(self, other, context=None): | |
"""Returns a rotated copy of self, value-of-other times.""" | |
if context is None: | |
context = getcontext() | |
other = _convert_other(other, raiseit=True) | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
if other._exp != 0: | |
return context._raise_error(InvalidOperation) | |
if not (-context.prec <= int(other) <= context.prec): | |
return context._raise_error(InvalidOperation) | |
if self._isinfinity(): | |
return Decimal(self) | |
# get values, pad if necessary | |
torot = int(other) | |
rotdig = self._int | |
topad = context.prec - len(rotdig) | |
if topad > 0: | |
rotdig = '0'*topad + rotdig | |
elif topad < 0: | |
rotdig = rotdig[-topad:] | |
# let's rotate! | |
rotated = rotdig[torot:] + rotdig[:torot] | |
return _dec_from_triple(self._sign, | |
rotated.lstrip('0') or '0', self._exp) | |
def scaleb(self, other, context=None): | |
"""Returns self operand after adding the second value to its exp.""" | |
if context is None: | |
context = getcontext() | |
other = _convert_other(other, raiseit=True) | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
if other._exp != 0: | |
return context._raise_error(InvalidOperation) | |
liminf = -2 * (context.Emax + context.prec) | |
limsup = 2 * (context.Emax + context.prec) | |
if not (liminf <= int(other) <= limsup): | |
return context._raise_error(InvalidOperation) | |
if self._isinfinity(): | |
return Decimal(self) | |
d = _dec_from_triple(self._sign, self._int, self._exp + int(other)) | |
d = d._fix(context) | |
return d | |
def shift(self, other, context=None): | |
"""Returns a shifted copy of self, value-of-other times.""" | |
if context is None: | |
context = getcontext() | |
other = _convert_other(other, raiseit=True) | |
ans = self._check_nans(other, context) | |
if ans: | |
return ans | |
if other._exp != 0: | |
return context._raise_error(InvalidOperation) | |
if not (-context.prec <= int(other) <= context.prec): | |
return context._raise_error(InvalidOperation) | |
if self._isinfinity(): | |
return Decimal(self) | |
# get values, pad if necessary | |
torot = int(other) | |
rotdig = self._int | |
topad = context.prec - len(rotdig) | |
if topad > 0: | |
rotdig = '0'*topad + rotdig | |
elif topad < 0: | |
rotdig = rotdig[-topad:] | |
# let's shift! | |
if torot < 0: | |
shifted = rotdig[:torot] | |
else: | |
shifted = rotdig + '0'*torot | |
shifted = shifted[-context.prec:] | |
return _dec_from_triple(self._sign, | |
shifted.lstrip('0') or '0', self._exp) | |
# Support for pickling, copy, and deepcopy | |
def __reduce__(self): | |
return (self.__class__, (str(self),)) | |
def __copy__(self): | |
if type(self) is Decimal: | |
return self # I'm immutable; therefore I am my own clone | |
return self.__class__(str(self)) | |
def __deepcopy__(self, memo): | |
if type(self) is Decimal: | |
return self # My components are also immutable | |
return self.__class__(str(self)) | |
# PEP 3101 support. the _localeconv keyword argument should be | |
# considered private: it's provided for ease of testing only. | |
def __format__(self, specifier, context=None, _localeconv=None): | |
"""Format a Decimal instance according to the given specifier. | |
The specifier should be a standard format specifier, with the | |
form described in PEP 3101. Formatting types 'e', 'E', 'f', | |
'F', 'g', 'G', 'n' and '%' are supported. If the formatting | |
type is omitted it defaults to 'g' or 'G', depending on the | |
value of context.capitals. | |
""" | |
# Note: PEP 3101 says that if the type is not present then | |
# there should be at least one digit after the decimal point. | |
# We take the liberty of ignoring this requirement for | |
# Decimal---it's presumably there to make sure that | |
# format(float, '') behaves similarly to str(float). | |
if context is None: | |
context = getcontext() | |
spec = _parse_format_specifier(specifier, _localeconv=_localeconv) | |
# special values don't care about the type or precision | |
if self._is_special: | |
sign = _format_sign(self._sign, spec) | |
body = str(self.copy_abs()) | |
if spec['type'] == '%': | |
body += '%' | |
return _format_align(sign, body, spec) | |
# a type of None defaults to 'g' or 'G', depending on context | |
if spec['type'] is None: | |
spec['type'] = ['g', 'G'][context.capitals] | |
# if type is '%', adjust exponent of self accordingly | |
if spec['type'] == '%': | |
self = _dec_from_triple(self._sign, self._int, self._exp+2) | |
# round if necessary, taking rounding mode from the context | |
rounding = context.rounding | |
precision = spec['precision'] | |
if precision is not None: | |
if spec['type'] in 'eE': | |
self = self._round(precision+1, rounding) | |
elif spec['type'] in 'fF%': | |
self = self._rescale(-precision, rounding) | |
elif spec['type'] in 'gG' and len(self._int) > precision: | |
self = self._round(precision, rounding) | |
# special case: zeros with a positive exponent can't be | |
# represented in fixed point; rescale them to 0e0. | |
if not self and self._exp > 0 and spec['type'] in 'fF%': | |
self = self._rescale(0, rounding) | |
# figure out placement of the decimal point | |
leftdigits = self._exp + len(self._int) | |
if spec['type'] in 'eE': | |
if not self and precision is not None: | |
dotplace = 1 - precision | |
else: | |
dotplace = 1 | |
elif spec['type'] in 'fF%': | |
dotplace = leftdigits | |
elif spec['type'] in 'gG': | |
if self._exp <= 0 and leftdigits > -6: | |
dotplace = leftdigits | |
else: | |
dotplace = 1 | |
# find digits before and after decimal point, and get exponent | |
if dotplace < 0: | |
intpart = '0' | |
fracpart = '0'*(-dotplace) + self._int | |
elif dotplace > len(self._int): | |
intpart = self._int + '0'*(dotplace-len(self._int)) | |
fracpart = '' | |
else: | |
intpart = self._int[:dotplace] or '0' | |
fracpart = self._int[dotplace:] | |
exp = leftdigits-dotplace | |
# done with the decimal-specific stuff; hand over the rest | |
# of the formatting to the _format_number function | |
return _format_number(self._sign, intpart, fracpart, exp, spec) | |
def _dec_from_triple(sign, coefficient, exponent, special=False): | |
"""Create a decimal instance directly, without any validation, | |
normalization (e.g. removal of leading zeros) or argument | |
conversion. | |
This function is for *internal use only*. | |
""" | |
self = object.__new__(Decimal) | |
self._sign = sign | |
self._int = coefficient | |
self._exp = exponent | |
self._is_special = special | |
return self | |
# Register Decimal as a kind of Number (an abstract base class). | |
# However, do not register it as Real (because Decimals are not | |
# interoperable with floats). | |
_numbers.Number.register(Decimal) | |
##### Context class ####################################################### | |
class _ContextManager(object): | |
"""Context manager class to support localcontext(). | |
Sets a copy of the supplied context in __enter__() and restores | |
the previous decimal context in __exit__() | |
""" | |
def __init__(self, new_context): | |
self.new_context = new_context.copy() | |
def __enter__(self): | |
self.saved_context = getcontext() | |
setcontext(self.new_context) | |
return self.new_context | |
def __exit__(self, t, v, tb): | |
setcontext(self.saved_context) | |
class Context(object): | |
"""Contains the context for a Decimal instance. | |
Contains: | |
prec - precision (for use in rounding, division, square roots..) | |
rounding - rounding type (how you round) | |
traps - If traps[exception] = 1, then the exception is | |
raised when it is caused. Otherwise, a value is | |
substituted in. | |
flags - When an exception is caused, flags[exception] is set. | |
(Whether or not the trap_enabler is set) | |
Should be reset by user of Decimal instance. | |
Emin - Minimum exponent | |
Emax - Maximum exponent | |
capitals - If 1, 1*10^1 is printed as 1E+1. | |
If 0, printed as 1e1 | |
clamp - If 1, change exponents if too high (Default 0) | |
""" | |
def __init__(self, prec=None, rounding=None, Emin=None, Emax=None, | |
capitals=None, clamp=None, flags=None, traps=None, | |
_ignored_flags=None): | |
# Set defaults; for everything except flags and _ignored_flags, | |
# inherit from DefaultContext. | |
try: | |
dc = DefaultContext | |
except NameError: | |
pass | |
self.prec = prec if prec is not None else dc.prec | |
self.rounding = rounding if rounding is not None else dc.rounding | |
self.Emin = Emin if Emin is not None else dc.Emin | |
self.Emax = Emax if Emax is not None else dc.Emax | |
self.capitals = capitals if capitals is not None else dc.capitals | |
self.clamp = clamp if clamp is not None else dc.clamp | |
if _ignored_flags is None: | |
self._ignored_flags = [] | |
else: | |
self._ignored_flags = _ignored_flags | |
if traps is None: | |
self.traps = dc.traps.copy() | |
elif not isinstance(traps, dict): | |
self.traps = dict((s, int(s in traps)) for s in _signals + traps) | |
else: | |
self.traps = traps | |
if flags is None: | |
self.flags = dict.fromkeys(_signals, 0) | |
elif not isinstance(flags, dict): | |
self.flags = dict((s, int(s in flags)) for s in _signals + flags) | |
else: | |
self.flags = flags | |
def _set_integer_check(self, name, value, vmin, vmax): | |
if not isinstance(value, int): | |
raise TypeError("%s must be an integer" % name) | |
if vmin == '-inf': | |
if value > vmax: | |
raise ValueError("%s must be in [%s, %d]. got: %s" % (name, vmin, vmax, value)) | |
elif vmax == 'inf': | |
if value < vmin: | |
raise ValueError("%s must be in [%d, %s]. got: %s" % (name, vmin, vmax, value)) | |
else: | |
if value < vmin or value > vmax: | |
raise ValueError("%s must be in [%d, %d]. got %s" % (name, vmin, vmax, value)) | |
return object.__setattr__(self, name, value) | |
def _set_signal_dict(self, name, d): | |
if not isinstance(d, dict): | |
raise TypeError("%s must be a signal dict" % d) | |
for key in d: | |
if not key in _signals: | |
raise KeyError("%s is not a valid signal dict" % d) | |
for key in _signals: | |
if not key in d: | |
raise KeyError("%s is not a valid signal dict" % d) | |
return object.__setattr__(self, name, d) | |
def __setattr__(self, name, value): | |
if name == 'prec': | |
return self._set_integer_check(name, value, 1, 'inf') | |
elif name == 'Emin': | |
return self._set_integer_check(name, value, '-inf', 0) | |
elif name == 'Emax': | |
return self._set_integer_check(name, value, 0, 'inf') | |
elif name == 'capitals': | |
return self._set_integer_check(name, value, 0, 1) | |
elif name == 'clamp': | |
return self._set_integer_check(name, value, 0, 1) | |
elif name == 'rounding': | |
if not value in _rounding_modes: | |
# raise TypeError even for strings to have consistency | |
# among various implementations. | |
raise TypeError("%s: invalid rounding mode" % value) | |
return object.__setattr__(self, name, value) | |
elif name == 'flags' or name == 'traps': | |
return self._set_signal_dict(name, value) | |
elif name == '_ignored_flags': | |
return object.__setattr__(self, name, value) | |
else: | |
raise AttributeError( | |
"'decimal.Context' object has no attribute '%s'" % name) | |
def __delattr__(self, name): | |
raise AttributeError("%s cannot be deleted" % name) | |
# Support for pickling, copy, and deepcopy | |
def __reduce__(self): | |
flags = [sig for sig, v in self.flags.items() if v] | |
traps = [sig for sig, v in self.traps.items() if v] | |
return (self.__class__, | |
(self.prec, self.rounding, self.Emin, self.Emax, | |
self.capitals, self.clamp, flags, traps)) | |
def __repr__(self): | |
"""Show the current context.""" | |
s = [] | |
s.append('Context(prec=%(prec)d, rounding=%(rounding)s, ' | |
'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, ' | |
'clamp=%(clamp)d' | |
% vars(self)) | |
names = [f.__name__ for f, v in self.flags.items() if v] | |
s.append('flags=[' + ', '.join(names) + ']') | |
names = [t.__name__ for t, v in self.traps.items() if v] | |
s.append('traps=[' + ', '.join(names) + ']') | |
return ', '.join(s) + ')' | |
def clear_flags(self): | |
"""Reset all flags to zero""" | |
for flag in self.flags: | |
self.flags[flag] = 0 | |
def clear_traps(self): | |
"""Reset all traps to zero""" | |
for flag in self.traps: | |
self.traps[flag] = 0 | |
def _shallow_copy(self): | |
"""Returns a shallow copy from self.""" | |
nc = Context(self.prec, self.rounding, self.Emin, self.Emax, | |
self.capitals, self.clamp, self.flags, self.traps, | |
self._ignored_flags) | |
return nc | |
def copy(self): | |
"""Returns a deep copy from self.""" | |
nc = Context(self.prec, self.rounding, self.Emin, self.Emax, | |
self.capitals, self.clamp, | |
self.flags.copy(), self.traps.copy(), | |
self._ignored_flags) | |
return nc | |
__copy__ = copy | |
def _raise_error(self, condition, explanation = None, *args): | |
"""Handles an error | |
If the flag is in _ignored_flags, returns the default response. | |
Otherwise, it sets the flag, then, if the corresponding | |
trap_enabler is set, it reraises the exception. Otherwise, it returns | |
the default value after setting the flag. | |
""" | |
error = _condition_map.get(condition, condition) | |
if error in self._ignored_flags: | |
# Don't touch the flag | |
return error().handle(self, *args) | |
self.flags[error] = 1 | |
if not self.traps[error]: | |
# The errors define how to handle themselves. | |
return condition().handle(self, *args) | |
# Errors should only be risked on copies of the context | |
# self._ignored_flags = [] | |
raise error(explanation) | |
def _ignore_all_flags(self): | |
"""Ignore all flags, if they are raised""" | |
return self._ignore_flags(*_signals) | |
def _ignore_flags(self, *flags): | |
"""Ignore the flags, if they are raised""" | |
# Do not mutate-- This way, copies of a context leave the original | |
# alone. | |
self._ignored_flags = (self._ignored_flags + list(flags)) | |
return list(flags) | |
def _regard_flags(self, *flags): | |
"""Stop ignoring the flags, if they are raised""" | |
if flags and isinstance(flags[0], (tuple,list)): | |
flags = flags[0] | |
for flag in flags: | |
self._ignored_flags.remove(flag) | |
# We inherit object.__hash__, so we must deny this explicitly | |
__hash__ = None | |
def Etiny(self): | |
"""Returns Etiny (= Emin - prec + 1)""" | |
return int(self.Emin - self.prec + 1) | |
def Etop(self): | |
"""Returns maximum exponent (= Emax - prec + 1)""" | |
return int(self.Emax - self.prec + 1) | |
def _set_rounding(self, type): | |
"""Sets the rounding type. | |
Sets the rounding type, and returns the current (previous) | |
rounding type. Often used like: | |
context = context.copy() | |
# so you don't change the calling context | |
# if an error occurs in the middle. | |
rounding = context._set_rounding(ROUND_UP) | |
val = self.__sub__(other, context=context) | |
context._set_rounding(rounding) | |
This will make it round up for that operation. | |
""" | |
rounding = self.rounding | |
self.rounding = type | |
return rounding | |
def create_decimal(self, num='0'): | |
"""Creates a new Decimal instance but using self as context. | |
This method implements the to-number operation of the | |
IBM Decimal specification.""" | |
if isinstance(num, str) and (num != num.strip() or '_' in num): | |
return self._raise_error(ConversionSyntax, | |
"trailing or leading whitespace and " | |
"underscores are not permitted.") | |
d = Decimal(num, context=self) | |
if d._isnan() and len(d._int) > self.prec - self.clamp: | |
return self._raise_error(ConversionSyntax, | |
"diagnostic info too long in NaN") | |
return d._fix(self) | |
def create_decimal_from_float(self, f): | |
"""Creates a new Decimal instance from a float but rounding using self | |
as the context. | |
>>> context = Context(prec=5, rounding=ROUND_DOWN) | |
>>> context.create_decimal_from_float(3.1415926535897932) | |
Decimal('3.1415') | |
>>> context = Context(prec=5, traps=[Inexact]) | |
>>> context.create_decimal_from_float(3.1415926535897932) | |
Traceback (most recent call last): | |
... | |
decimal.Inexact: None | |
""" | |
d = Decimal.from_float(f) # An exact conversion | |
return d._fix(self) # Apply the context rounding | |
# Methods | |
def abs(self, a): | |
"""Returns the absolute value of the operand. | |
If the operand is negative, the result is the same as using the minus | |
operation on the operand. Otherwise, the result is the same as using | |
the plus operation on the operand. | |
>>> ExtendedContext.abs(Decimal('2.1')) | |
Decimal('2.1') | |
>>> ExtendedContext.abs(Decimal('-100')) | |
Decimal('100') | |
>>> ExtendedContext.abs(Decimal('101.5')) | |
Decimal('101.5') | |
>>> ExtendedContext.abs(Decimal('-101.5')) | |
Decimal('101.5') | |
>>> ExtendedContext.abs(-1) | |
Decimal('1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.__abs__(context=self) | |
def add(self, a, b): | |
"""Return the sum of the two operands. | |
>>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) | |
Decimal('19.00') | |
>>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) | |
Decimal('1.02E+4') | |
>>> ExtendedContext.add(1, Decimal(2)) | |
Decimal('3') | |
>>> ExtendedContext.add(Decimal(8), 5) | |
Decimal('13') | |
>>> ExtendedContext.add(5, 5) | |
Decimal('10') | |
""" | |
a = _convert_other(a, raiseit=True) | |
r = a.__add__(b, context=self) | |
if r is NotImplemented: | |
raise TypeError("Unable to convert %s to Decimal" % b) | |
else: | |
return r | |
def _apply(self, a): | |
return str(a._fix(self)) | |
def canonical(self, a): | |
"""Returns the same Decimal object. | |
As we do not have different encodings for the same number, the | |
received object already is in its canonical form. | |
>>> ExtendedContext.canonical(Decimal('2.50')) | |
Decimal('2.50') | |
""" | |
if not isinstance(a, Decimal): | |
raise TypeError("canonical requires a Decimal as an argument.") | |
return a.canonical() | |
def compare(self, a, b): | |
"""Compares values numerically. | |
If the signs of the operands differ, a value representing each operand | |
('-1' if the operand is less than zero, '0' if the operand is zero or | |
negative zero, or '1' if the operand is greater than zero) is used in | |
place of that operand for the comparison instead of the actual | |
operand. | |
The comparison is then effected by subtracting the second operand from | |
the first and then returning a value according to the result of the | |
subtraction: '-1' if the result is less than zero, '0' if the result is | |
zero or negative zero, or '1' if the result is greater than zero. | |
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) | |
Decimal('-1') | |
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) | |
Decimal('0') | |
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) | |
Decimal('0') | |
>>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) | |
Decimal('1') | |
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) | |
Decimal('1') | |
>>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) | |
Decimal('-1') | |
>>> ExtendedContext.compare(1, 2) | |
Decimal('-1') | |
>>> ExtendedContext.compare(Decimal(1), 2) | |
Decimal('-1') | |
>>> ExtendedContext.compare(1, Decimal(2)) | |
Decimal('-1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.compare(b, context=self) | |
def compare_signal(self, a, b): | |
"""Compares the values of the two operands numerically. | |
It's pretty much like compare(), but all NaNs signal, with signaling | |
NaNs taking precedence over quiet NaNs. | |
>>> c = ExtendedContext | |
>>> c.compare_signal(Decimal('2.1'), Decimal('3')) | |
Decimal('-1') | |
>>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) | |
Decimal('0') | |
>>> c.flags[InvalidOperation] = 0 | |
>>> print(c.flags[InvalidOperation]) | |
0 | |
>>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) | |
Decimal('NaN') | |
>>> print(c.flags[InvalidOperation]) | |
1 | |
>>> c.flags[InvalidOperation] = 0 | |
>>> print(c.flags[InvalidOperation]) | |
0 | |
>>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) | |
Decimal('NaN') | |
>>> print(c.flags[InvalidOperation]) | |
1 | |
>>> c.compare_signal(-1, 2) | |
Decimal('-1') | |
>>> c.compare_signal(Decimal(-1), 2) | |
Decimal('-1') | |
>>> c.compare_signal(-1, Decimal(2)) | |
Decimal('-1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.compare_signal(b, context=self) | |
def compare_total(self, a, b): | |
"""Compares two operands using their abstract representation. | |
This is not like the standard compare, which use their numerical | |
value. Note that a total ordering is defined for all possible abstract | |
representations. | |
>>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) | |
Decimal('-1') | |
>>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12')) | |
Decimal('-1') | |
>>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) | |
Decimal('-1') | |
>>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) | |
Decimal('0') | |
>>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300')) | |
Decimal('1') | |
>>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN')) | |
Decimal('-1') | |
>>> ExtendedContext.compare_total(1, 2) | |
Decimal('-1') | |
>>> ExtendedContext.compare_total(Decimal(1), 2) | |
Decimal('-1') | |
>>> ExtendedContext.compare_total(1, Decimal(2)) | |
Decimal('-1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.compare_total(b) | |
def compare_total_mag(self, a, b): | |
"""Compares two operands using their abstract representation ignoring sign. | |
Like compare_total, but with operand's sign ignored and assumed to be 0. | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.compare_total_mag(b) | |
def copy_abs(self, a): | |
"""Returns a copy of the operand with the sign set to 0. | |
>>> ExtendedContext.copy_abs(Decimal('2.1')) | |
Decimal('2.1') | |
>>> ExtendedContext.copy_abs(Decimal('-100')) | |
Decimal('100') | |
>>> ExtendedContext.copy_abs(-1) | |
Decimal('1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.copy_abs() | |
def copy_decimal(self, a): | |
"""Returns a copy of the decimal object. | |
>>> ExtendedContext.copy_decimal(Decimal('2.1')) | |
Decimal('2.1') | |
>>> ExtendedContext.copy_decimal(Decimal('-1.00')) | |
Decimal('-1.00') | |
>>> ExtendedContext.copy_decimal(1) | |
Decimal('1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return Decimal(a) | |
def copy_negate(self, a): | |
"""Returns a copy of the operand with the sign inverted. | |
>>> ExtendedContext.copy_negate(Decimal('101.5')) | |
Decimal('-101.5') | |
>>> ExtendedContext.copy_negate(Decimal('-101.5')) | |
Decimal('101.5') | |
>>> ExtendedContext.copy_negate(1) | |
Decimal('-1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.copy_negate() | |
def copy_sign(self, a, b): | |
"""Copies the second operand's sign to the first one. | |
In detail, it returns a copy of the first operand with the sign | |
equal to the sign of the second operand. | |
>>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) | |
Decimal('1.50') | |
>>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) | |
Decimal('1.50') | |
>>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) | |
Decimal('-1.50') | |
>>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) | |
Decimal('-1.50') | |
>>> ExtendedContext.copy_sign(1, -2) | |
Decimal('-1') | |
>>> ExtendedContext.copy_sign(Decimal(1), -2) | |
Decimal('-1') | |
>>> ExtendedContext.copy_sign(1, Decimal(-2)) | |
Decimal('-1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.copy_sign(b) | |
def divide(self, a, b): | |
"""Decimal division in a specified context. | |
>>> ExtendedContext.divide(Decimal('1'), Decimal('3')) | |
Decimal('0.333333333') | |
>>> ExtendedContext.divide(Decimal('2'), Decimal('3')) | |
Decimal('0.666666667') | |
>>> ExtendedContext.divide(Decimal('5'), Decimal('2')) | |
Decimal('2.5') | |
>>> ExtendedContext.divide(Decimal('1'), Decimal('10')) | |
Decimal('0.1') | |
>>> ExtendedContext.divide(Decimal('12'), Decimal('12')) | |
Decimal('1') | |
>>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) | |
Decimal('4.00') | |
>>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) | |
Decimal('1.20') | |
>>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) | |
Decimal('10') | |
>>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) | |
Decimal('1000') | |
>>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) | |
Decimal('1.20E+6') | |
>>> ExtendedContext.divide(5, 5) | |
Decimal('1') | |
>>> ExtendedContext.divide(Decimal(5), 5) | |
Decimal('1') | |
>>> ExtendedContext.divide(5, Decimal(5)) | |
Decimal('1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
r = a.__truediv__(b, context=self) | |
if r is NotImplemented: | |
raise TypeError("Unable to convert %s to Decimal" % b) | |
else: | |
return r | |
def divide_int(self, a, b): | |
"""Divides two numbers and returns the integer part of the result. | |
>>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) | |
Decimal('0') | |
>>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) | |
Decimal('3') | |
>>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) | |
Decimal('3') | |
>>> ExtendedContext.divide_int(10, 3) | |
Decimal('3') | |
>>> ExtendedContext.divide_int(Decimal(10), 3) | |
Decimal('3') | |
>>> ExtendedContext.divide_int(10, Decimal(3)) | |
Decimal('3') | |
""" | |
a = _convert_other(a, raiseit=True) | |
r = a.__floordiv__(b, context=self) | |
if r is NotImplemented: | |
raise TypeError("Unable to convert %s to Decimal" % b) | |
else: | |
return r | |
def divmod(self, a, b): | |
"""Return (a // b, a % b). | |
>>> ExtendedContext.divmod(Decimal(8), Decimal(3)) | |
(Decimal('2'), Decimal('2')) | |
>>> ExtendedContext.divmod(Decimal(8), Decimal(4)) | |
(Decimal('2'), Decimal('0')) | |
>>> ExtendedContext.divmod(8, 4) | |
(Decimal('2'), Decimal('0')) | |
>>> ExtendedContext.divmod(Decimal(8), 4) | |
(Decimal('2'), Decimal('0')) | |
>>> ExtendedContext.divmod(8, Decimal(4)) | |
(Decimal('2'), Decimal('0')) | |
""" | |
a = _convert_other(a, raiseit=True) | |
r = a.__divmod__(b, context=self) | |
if r is NotImplemented: | |
raise TypeError("Unable to convert %s to Decimal" % b) | |
else: | |
return r | |
def exp(self, a): | |
"""Returns e ** a. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> c.exp(Decimal('-Infinity')) | |
Decimal('0') | |
>>> c.exp(Decimal('-1')) | |
Decimal('0.367879441') | |
>>> c.exp(Decimal('0')) | |
Decimal('1') | |
>>> c.exp(Decimal('1')) | |
Decimal('2.71828183') | |
>>> c.exp(Decimal('0.693147181')) | |
Decimal('2.00000000') | |
>>> c.exp(Decimal('+Infinity')) | |
Decimal('Infinity') | |
>>> c.exp(10) | |
Decimal('22026.4658') | |
""" | |
a =_convert_other(a, raiseit=True) | |
return a.exp(context=self) | |
def fma(self, a, b, c): | |
"""Returns a multiplied by b, plus c. | |
The first two operands are multiplied together, using multiply, | |
the third operand is then added to the result of that | |
multiplication, using add, all with only one final rounding. | |
>>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) | |
Decimal('22') | |
>>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) | |
Decimal('-8') | |
>>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) | |
Decimal('1.38435736E+12') | |
>>> ExtendedContext.fma(1, 3, 4) | |
Decimal('7') | |
>>> ExtendedContext.fma(1, Decimal(3), 4) | |
Decimal('7') | |
>>> ExtendedContext.fma(1, 3, Decimal(4)) | |
Decimal('7') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.fma(b, c, context=self) | |
def is_canonical(self, a): | |
"""Return True if the operand is canonical; otherwise return False. | |
Currently, the encoding of a Decimal instance is always | |
canonical, so this method returns True for any Decimal. | |
>>> ExtendedContext.is_canonical(Decimal('2.50')) | |
True | |
""" | |
if not isinstance(a, Decimal): | |
raise TypeError("is_canonical requires a Decimal as an argument.") | |
return a.is_canonical() | |
def is_finite(self, a): | |
"""Return True if the operand is finite; otherwise return False. | |
A Decimal instance is considered finite if it is neither | |
infinite nor a NaN. | |
>>> ExtendedContext.is_finite(Decimal('2.50')) | |
True | |
>>> ExtendedContext.is_finite(Decimal('-0.3')) | |
True | |
>>> ExtendedContext.is_finite(Decimal('0')) | |
True | |
>>> ExtendedContext.is_finite(Decimal('Inf')) | |
False | |
>>> ExtendedContext.is_finite(Decimal('NaN')) | |
False | |
>>> ExtendedContext.is_finite(1) | |
True | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_finite() | |
def is_infinite(self, a): | |
"""Return True if the operand is infinite; otherwise return False. | |
>>> ExtendedContext.is_infinite(Decimal('2.50')) | |
False | |
>>> ExtendedContext.is_infinite(Decimal('-Inf')) | |
True | |
>>> ExtendedContext.is_infinite(Decimal('NaN')) | |
False | |
>>> ExtendedContext.is_infinite(1) | |
False | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_infinite() | |
def is_nan(self, a): | |
"""Return True if the operand is a qNaN or sNaN; | |
otherwise return False. | |
>>> ExtendedContext.is_nan(Decimal('2.50')) | |
False | |
>>> ExtendedContext.is_nan(Decimal('NaN')) | |
True | |
>>> ExtendedContext.is_nan(Decimal('-sNaN')) | |
True | |
>>> ExtendedContext.is_nan(1) | |
False | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_nan() | |
def is_normal(self, a): | |
"""Return True if the operand is a normal number; | |
otherwise return False. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> c.is_normal(Decimal('2.50')) | |
True | |
>>> c.is_normal(Decimal('0.1E-999')) | |
False | |
>>> c.is_normal(Decimal('0.00')) | |
False | |
>>> c.is_normal(Decimal('-Inf')) | |
False | |
>>> c.is_normal(Decimal('NaN')) | |
False | |
>>> c.is_normal(1) | |
True | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_normal(context=self) | |
def is_qnan(self, a): | |
"""Return True if the operand is a quiet NaN; otherwise return False. | |
>>> ExtendedContext.is_qnan(Decimal('2.50')) | |
False | |
>>> ExtendedContext.is_qnan(Decimal('NaN')) | |
True | |
>>> ExtendedContext.is_qnan(Decimal('sNaN')) | |
False | |
>>> ExtendedContext.is_qnan(1) | |
False | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_qnan() | |
def is_signed(self, a): | |
"""Return True if the operand is negative; otherwise return False. | |
>>> ExtendedContext.is_signed(Decimal('2.50')) | |
False | |
>>> ExtendedContext.is_signed(Decimal('-12')) | |
True | |
>>> ExtendedContext.is_signed(Decimal('-0')) | |
True | |
>>> ExtendedContext.is_signed(8) | |
False | |
>>> ExtendedContext.is_signed(-8) | |
True | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_signed() | |
def is_snan(self, a): | |
"""Return True if the operand is a signaling NaN; | |
otherwise return False. | |
>>> ExtendedContext.is_snan(Decimal('2.50')) | |
False | |
>>> ExtendedContext.is_snan(Decimal('NaN')) | |
False | |
>>> ExtendedContext.is_snan(Decimal('sNaN')) | |
True | |
>>> ExtendedContext.is_snan(1) | |
False | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_snan() | |
def is_subnormal(self, a): | |
"""Return True if the operand is subnormal; otherwise return False. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> c.is_subnormal(Decimal('2.50')) | |
False | |
>>> c.is_subnormal(Decimal('0.1E-999')) | |
True | |
>>> c.is_subnormal(Decimal('0.00')) | |
False | |
>>> c.is_subnormal(Decimal('-Inf')) | |
False | |
>>> c.is_subnormal(Decimal('NaN')) | |
False | |
>>> c.is_subnormal(1) | |
False | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_subnormal(context=self) | |
def is_zero(self, a): | |
"""Return True if the operand is a zero; otherwise return False. | |
>>> ExtendedContext.is_zero(Decimal('0')) | |
True | |
>>> ExtendedContext.is_zero(Decimal('2.50')) | |
False | |
>>> ExtendedContext.is_zero(Decimal('-0E+2')) | |
True | |
>>> ExtendedContext.is_zero(1) | |
False | |
>>> ExtendedContext.is_zero(0) | |
True | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.is_zero() | |
def ln(self, a): | |
"""Returns the natural (base e) logarithm of the operand. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> c.ln(Decimal('0')) | |
Decimal('-Infinity') | |
>>> c.ln(Decimal('1.000')) | |
Decimal('0') | |
>>> c.ln(Decimal('2.71828183')) | |
Decimal('1.00000000') | |
>>> c.ln(Decimal('10')) | |
Decimal('2.30258509') | |
>>> c.ln(Decimal('+Infinity')) | |
Decimal('Infinity') | |
>>> c.ln(1) | |
Decimal('0') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.ln(context=self) | |
def log10(self, a): | |
"""Returns the base 10 logarithm of the operand. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> c.log10(Decimal('0')) | |
Decimal('-Infinity') | |
>>> c.log10(Decimal('0.001')) | |
Decimal('-3') | |
>>> c.log10(Decimal('1.000')) | |
Decimal('0') | |
>>> c.log10(Decimal('2')) | |
Decimal('0.301029996') | |
>>> c.log10(Decimal('10')) | |
Decimal('1') | |
>>> c.log10(Decimal('70')) | |
Decimal('1.84509804') | |
>>> c.log10(Decimal('+Infinity')) | |
Decimal('Infinity') | |
>>> c.log10(0) | |
Decimal('-Infinity') | |
>>> c.log10(1) | |
Decimal('0') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.log10(context=self) | |
def logb(self, a): | |
""" Returns the exponent of the magnitude of the operand's MSD. | |
The result is the integer which is the exponent of the magnitude | |
of the most significant digit of the operand (as though the | |
operand were truncated to a single digit while maintaining the | |
value of that digit and without limiting the resulting exponent). | |
>>> ExtendedContext.logb(Decimal('250')) | |
Decimal('2') | |
>>> ExtendedContext.logb(Decimal('2.50')) | |
Decimal('0') | |
>>> ExtendedContext.logb(Decimal('0.03')) | |
Decimal('-2') | |
>>> ExtendedContext.logb(Decimal('0')) | |
Decimal('-Infinity') | |
>>> ExtendedContext.logb(1) | |
Decimal('0') | |
>>> ExtendedContext.logb(10) | |
Decimal('1') | |
>>> ExtendedContext.logb(100) | |
Decimal('2') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.logb(context=self) | |
def logical_and(self, a, b): | |
"""Applies the logical operation 'and' between each operand's digits. | |
The operands must be both logical numbers. | |
>>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) | |
Decimal('0') | |
>>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) | |
Decimal('0') | |
>>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) | |
Decimal('0') | |
>>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) | |
Decimal('1') | |
>>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) | |
Decimal('1000') | |
>>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) | |
Decimal('10') | |
>>> ExtendedContext.logical_and(110, 1101) | |
Decimal('100') | |
>>> ExtendedContext.logical_and(Decimal(110), 1101) | |
Decimal('100') | |
>>> ExtendedContext.logical_and(110, Decimal(1101)) | |
Decimal('100') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.logical_and(b, context=self) | |
def logical_invert(self, a): | |
"""Invert all the digits in the operand. | |
The operand must be a logical number. | |
>>> ExtendedContext.logical_invert(Decimal('0')) | |
Decimal('111111111') | |
>>> ExtendedContext.logical_invert(Decimal('1')) | |
Decimal('111111110') | |
>>> ExtendedContext.logical_invert(Decimal('111111111')) | |
Decimal('0') | |
>>> ExtendedContext.logical_invert(Decimal('101010101')) | |
Decimal('10101010') | |
>>> ExtendedContext.logical_invert(1101) | |
Decimal('111110010') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.logical_invert(context=self) | |
def logical_or(self, a, b): | |
"""Applies the logical operation 'or' between each operand's digits. | |
The operands must be both logical numbers. | |
>>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) | |
Decimal('0') | |
>>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) | |
Decimal('1') | |
>>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) | |
Decimal('1') | |
>>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) | |
Decimal('1') | |
>>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) | |
Decimal('1110') | |
>>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) | |
Decimal('1110') | |
>>> ExtendedContext.logical_or(110, 1101) | |
Decimal('1111') | |
>>> ExtendedContext.logical_or(Decimal(110), 1101) | |
Decimal('1111') | |
>>> ExtendedContext.logical_or(110, Decimal(1101)) | |
Decimal('1111') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.logical_or(b, context=self) | |
def logical_xor(self, a, b): | |
"""Applies the logical operation 'xor' between each operand's digits. | |
The operands must be both logical numbers. | |
>>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) | |
Decimal('0') | |
>>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) | |
Decimal('1') | |
>>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) | |
Decimal('1') | |
>>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) | |
Decimal('0') | |
>>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) | |
Decimal('110') | |
>>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) | |
Decimal('1101') | |
>>> ExtendedContext.logical_xor(110, 1101) | |
Decimal('1011') | |
>>> ExtendedContext.logical_xor(Decimal(110), 1101) | |
Decimal('1011') | |
>>> ExtendedContext.logical_xor(110, Decimal(1101)) | |
Decimal('1011') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.logical_xor(b, context=self) | |
def max(self, a, b): | |
"""max compares two values numerically and returns the maximum. | |
If either operand is a NaN then the general rules apply. | |
Otherwise, the operands are compared as though by the compare | |
operation. If they are numerically equal then the left-hand operand | |
is chosen as the result. Otherwise the maximum (closer to positive | |
infinity) of the two operands is chosen as the result. | |
>>> ExtendedContext.max(Decimal('3'), Decimal('2')) | |
Decimal('3') | |
>>> ExtendedContext.max(Decimal('-10'), Decimal('3')) | |
Decimal('3') | |
>>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) | |
Decimal('1') | |
>>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) | |
Decimal('7') | |
>>> ExtendedContext.max(1, 2) | |
Decimal('2') | |
>>> ExtendedContext.max(Decimal(1), 2) | |
Decimal('2') | |
>>> ExtendedContext.max(1, Decimal(2)) | |
Decimal('2') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.max(b, context=self) | |
def max_mag(self, a, b): | |
"""Compares the values numerically with their sign ignored. | |
>>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) | |
Decimal('7') | |
>>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) | |
Decimal('-10') | |
>>> ExtendedContext.max_mag(1, -2) | |
Decimal('-2') | |
>>> ExtendedContext.max_mag(Decimal(1), -2) | |
Decimal('-2') | |
>>> ExtendedContext.max_mag(1, Decimal(-2)) | |
Decimal('-2') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.max_mag(b, context=self) | |
def min(self, a, b): | |
"""min compares two values numerically and returns the minimum. | |
If either operand is a NaN then the general rules apply. | |
Otherwise, the operands are compared as though by the compare | |
operation. If they are numerically equal then the left-hand operand | |
is chosen as the result. Otherwise the minimum (closer to negative | |
infinity) of the two operands is chosen as the result. | |
>>> ExtendedContext.min(Decimal('3'), Decimal('2')) | |
Decimal('2') | |
>>> ExtendedContext.min(Decimal('-10'), Decimal('3')) | |
Decimal('-10') | |
>>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) | |
Decimal('1.0') | |
>>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) | |
Decimal('7') | |
>>> ExtendedContext.min(1, 2) | |
Decimal('1') | |
>>> ExtendedContext.min(Decimal(1), 2) | |
Decimal('1') | |
>>> ExtendedContext.min(1, Decimal(29)) | |
Decimal('1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.min(b, context=self) | |
def min_mag(self, a, b): | |
"""Compares the values numerically with their sign ignored. | |
>>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) | |
Decimal('-2') | |
>>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) | |
Decimal('-3') | |
>>> ExtendedContext.min_mag(1, -2) | |
Decimal('1') | |
>>> ExtendedContext.min_mag(Decimal(1), -2) | |
Decimal('1') | |
>>> ExtendedContext.min_mag(1, Decimal(-2)) | |
Decimal('1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.min_mag(b, context=self) | |
def minus(self, a): | |
"""Minus corresponds to unary prefix minus in Python. | |
The operation is evaluated using the same rules as subtract; the | |
operation minus(a) is calculated as subtract('0', a) where the '0' | |
has the same exponent as the operand. | |
>>> ExtendedContext.minus(Decimal('1.3')) | |
Decimal('-1.3') | |
>>> ExtendedContext.minus(Decimal('-1.3')) | |
Decimal('1.3') | |
>>> ExtendedContext.minus(1) | |
Decimal('-1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.__neg__(context=self) | |
def multiply(self, a, b): | |
"""multiply multiplies two operands. | |
If either operand is a special value then the general rules apply. | |
Otherwise, the operands are multiplied together | |
('long multiplication'), resulting in a number which may be as long as | |
the sum of the lengths of the two operands. | |
>>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) | |
Decimal('3.60') | |
>>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) | |
Decimal('21') | |
>>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) | |
Decimal('0.72') | |
>>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) | |
Decimal('-0.0') | |
>>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) | |
Decimal('4.28135971E+11') | |
>>> ExtendedContext.multiply(7, 7) | |
Decimal('49') | |
>>> ExtendedContext.multiply(Decimal(7), 7) | |
Decimal('49') | |
>>> ExtendedContext.multiply(7, Decimal(7)) | |
Decimal('49') | |
""" | |
a = _convert_other(a, raiseit=True) | |
r = a.__mul__(b, context=self) | |
if r is NotImplemented: | |
raise TypeError("Unable to convert %s to Decimal" % b) | |
else: | |
return r | |
def next_minus(self, a): | |
"""Returns the largest representable number smaller than a. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> ExtendedContext.next_minus(Decimal('1')) | |
Decimal('0.999999999') | |
>>> c.next_minus(Decimal('1E-1007')) | |
Decimal('0E-1007') | |
>>> ExtendedContext.next_minus(Decimal('-1.00000003')) | |
Decimal('-1.00000004') | |
>>> c.next_minus(Decimal('Infinity')) | |
Decimal('9.99999999E+999') | |
>>> c.next_minus(1) | |
Decimal('0.999999999') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.next_minus(context=self) | |
def next_plus(self, a): | |
"""Returns the smallest representable number larger than a. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> ExtendedContext.next_plus(Decimal('1')) | |
Decimal('1.00000001') | |
>>> c.next_plus(Decimal('-1E-1007')) | |
Decimal('-0E-1007') | |
>>> ExtendedContext.next_plus(Decimal('-1.00000003')) | |
Decimal('-1.00000002') | |
>>> c.next_plus(Decimal('-Infinity')) | |
Decimal('-9.99999999E+999') | |
>>> c.next_plus(1) | |
Decimal('1.00000001') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.next_plus(context=self) | |
def next_toward(self, a, b): | |
"""Returns the number closest to a, in direction towards b. | |
The result is the closest representable number from the first | |
operand (but not the first operand) that is in the direction | |
towards the second operand, unless the operands have the same | |
value. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> c.next_toward(Decimal('1'), Decimal('2')) | |
Decimal('1.00000001') | |
>>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) | |
Decimal('-0E-1007') | |
>>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) | |
Decimal('-1.00000002') | |
>>> c.next_toward(Decimal('1'), Decimal('0')) | |
Decimal('0.999999999') | |
>>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) | |
Decimal('0E-1007') | |
>>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) | |
Decimal('-1.00000004') | |
>>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) | |
Decimal('-0.00') | |
>>> c.next_toward(0, 1) | |
Decimal('1E-1007') | |
>>> c.next_toward(Decimal(0), 1) | |
Decimal('1E-1007') | |
>>> c.next_toward(0, Decimal(1)) | |
Decimal('1E-1007') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.next_toward(b, context=self) | |
def normalize(self, a): | |
"""normalize reduces an operand to its simplest form. | |
Essentially a plus operation with all trailing zeros removed from the | |
result. | |
>>> ExtendedContext.normalize(Decimal('2.1')) | |
Decimal('2.1') | |
>>> ExtendedContext.normalize(Decimal('-2.0')) | |
Decimal('-2') | |
>>> ExtendedContext.normalize(Decimal('1.200')) | |
Decimal('1.2') | |
>>> ExtendedContext.normalize(Decimal('-120')) | |
Decimal('-1.2E+2') | |
>>> ExtendedContext.normalize(Decimal('120.00')) | |
Decimal('1.2E+2') | |
>>> ExtendedContext.normalize(Decimal('0.00')) | |
Decimal('0') | |
>>> ExtendedContext.normalize(6) | |
Decimal('6') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.normalize(context=self) | |
def number_class(self, a): | |
"""Returns an indication of the class of the operand. | |
The class is one of the following strings: | |
-sNaN | |
-NaN | |
-Infinity | |
-Normal | |
-Subnormal | |
-Zero | |
+Zero | |
+Subnormal | |
+Normal | |
+Infinity | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> c.number_class(Decimal('Infinity')) | |
'+Infinity' | |
>>> c.number_class(Decimal('1E-10')) | |
'+Normal' | |
>>> c.number_class(Decimal('2.50')) | |
'+Normal' | |
>>> c.number_class(Decimal('0.1E-999')) | |
'+Subnormal' | |
>>> c.number_class(Decimal('0')) | |
'+Zero' | |
>>> c.number_class(Decimal('-0')) | |
'-Zero' | |
>>> c.number_class(Decimal('-0.1E-999')) | |
'-Subnormal' | |
>>> c.number_class(Decimal('-1E-10')) | |
'-Normal' | |
>>> c.number_class(Decimal('-2.50')) | |
'-Normal' | |
>>> c.number_class(Decimal('-Infinity')) | |
'-Infinity' | |
>>> c.number_class(Decimal('NaN')) | |
'NaN' | |
>>> c.number_class(Decimal('-NaN')) | |
'NaN' | |
>>> c.number_class(Decimal('sNaN')) | |
'sNaN' | |
>>> c.number_class(123) | |
'+Normal' | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.number_class(context=self) | |
def plus(self, a): | |
"""Plus corresponds to unary prefix plus in Python. | |
The operation is evaluated using the same rules as add; the | |
operation plus(a) is calculated as add('0', a) where the '0' | |
has the same exponent as the operand. | |
>>> ExtendedContext.plus(Decimal('1.3')) | |
Decimal('1.3') | |
>>> ExtendedContext.plus(Decimal('-1.3')) | |
Decimal('-1.3') | |
>>> ExtendedContext.plus(-1) | |
Decimal('-1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.__pos__(context=self) | |
def power(self, a, b, modulo=None): | |
"""Raises a to the power of b, to modulo if given. | |
With two arguments, compute a**b. If a is negative then b | |
must be integral. The result will be inexact unless b is | |
integral and the result is finite and can be expressed exactly | |
in 'precision' digits. | |
With three arguments, compute (a**b) % modulo. For the | |
three argument form, the following restrictions on the | |
arguments hold: | |
- all three arguments must be integral | |
- b must be nonnegative | |
- at least one of a or b must be nonzero | |
- modulo must be nonzero and have at most 'precision' digits | |
The result of pow(a, b, modulo) is identical to the result | |
that would be obtained by computing (a**b) % modulo with | |
unbounded precision, but is computed more efficiently. It is | |
always exact. | |
>>> c = ExtendedContext.copy() | |
>>> c.Emin = -999 | |
>>> c.Emax = 999 | |
>>> c.power(Decimal('2'), Decimal('3')) | |
Decimal('8') | |
>>> c.power(Decimal('-2'), Decimal('3')) | |
Decimal('-8') | |
>>> c.power(Decimal('2'), Decimal('-3')) | |
Decimal('0.125') | |
>>> c.power(Decimal('1.7'), Decimal('8')) | |
Decimal('69.7575744') | |
>>> c.power(Decimal('10'), Decimal('0.301029996')) | |
Decimal('2.00000000') | |
>>> c.power(Decimal('Infinity'), Decimal('-1')) | |
Decimal('0') | |
>>> c.power(Decimal('Infinity'), Decimal('0')) | |
Decimal('1') | |
>>> c.power(Decimal('Infinity'), Decimal('1')) | |
Decimal('Infinity') | |
>>> c.power(Decimal('-Infinity'), Decimal('-1')) | |
Decimal('-0') | |
>>> c.power(Decimal('-Infinity'), Decimal('0')) | |
Decimal('1') | |
>>> c.power(Decimal('-Infinity'), Decimal('1')) | |
Decimal('-Infinity') | |
>>> c.power(Decimal('-Infinity'), Decimal('2')) | |
Decimal('Infinity') | |
>>> c.power(Decimal('0'), Decimal('0')) | |
Decimal('NaN') | |
>>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) | |
Decimal('11') | |
>>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) | |
Decimal('-11') | |
>>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) | |
Decimal('1') | |
>>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) | |
Decimal('11') | |
>>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) | |
Decimal('11729830') | |
>>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) | |
Decimal('-0') | |
>>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) | |
Decimal('1') | |
>>> ExtendedContext.power(7, 7) | |
Decimal('823543') | |
>>> ExtendedContext.power(Decimal(7), 7) | |
Decimal('823543') | |
>>> ExtendedContext.power(7, Decimal(7), 2) | |
Decimal('1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
r = a.__pow__(b, modulo, context=self) | |
if r is NotImplemented: | |
raise TypeError("Unable to convert %s to Decimal" % b) | |
else: | |
return r | |
def quantize(self, a, b): | |
"""Returns a value equal to 'a' (rounded), having the exponent of 'b'. | |
The coefficient of the result is derived from that of the left-hand | |
operand. It may be rounded using the current rounding setting (if the | |
exponent is being increased), multiplied by a positive power of ten (if | |
the exponent is being decreased), or is unchanged (if the exponent is | |
already equal to that of the right-hand operand). | |
Unlike other operations, if the length of the coefficient after the | |
quantize operation would be greater than precision then an Invalid | |
operation condition is raised. This guarantees that, unless there is | |
an error condition, the exponent of the result of a quantize is always | |
equal to that of the right-hand operand. | |
Also unlike other operations, quantize will never raise Underflow, even | |
if the result is subnormal and inexact. | |
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) | |
Decimal('2.170') | |
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) | |
Decimal('2.17') | |
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) | |
Decimal('2.2') | |
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) | |
Decimal('2') | |
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) | |
Decimal('0E+1') | |
>>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) | |
Decimal('-Infinity') | |
>>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) | |
Decimal('NaN') | |
>>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) | |
Decimal('-0') | |
>>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) | |
Decimal('-0E+5') | |
>>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) | |
Decimal('NaN') | |
>>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) | |
Decimal('NaN') | |
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) | |
Decimal('217.0') | |
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) | |
Decimal('217') | |
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) | |
Decimal('2.2E+2') | |
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) | |
Decimal('2E+2') | |
>>> ExtendedContext.quantize(1, 2) | |
Decimal('1') | |
>>> ExtendedContext.quantize(Decimal(1), 2) | |
Decimal('1') | |
>>> ExtendedContext.quantize(1, Decimal(2)) | |
Decimal('1') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.quantize(b, context=self) | |
def radix(self): | |
"""Just returns 10, as this is Decimal, :) | |
>>> ExtendedContext.radix() | |
Decimal('10') | |
""" | |
return Decimal(10) | |
def remainder(self, a, b): | |
"""Returns the remainder from integer division. | |
The result is the residue of the dividend after the operation of | |
calculating integer division as described for divide-integer, rounded | |
to precision digits if necessary. The sign of the result, if | |
non-zero, is the same as that of the original dividend. | |
This operation will fail under the same conditions as integer division | |
(that is, if integer division on the same two operands would fail, the | |
remainder cannot be calculated). | |
>>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) | |
Decimal('2.1') | |
>>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) | |
Decimal('1') | |
>>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) | |
Decimal('-1') | |
>>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) | |
Decimal('0.2') | |
>>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) | |
Decimal('0.1') | |
>>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) | |
Decimal('1.0') | |
>>> ExtendedContext.remainder(22, 6) | |
Decimal('4') | |
>>> ExtendedContext.remainder(Decimal(22), 6) | |
Decimal('4') | |
>>> ExtendedContext.remainder(22, Decimal(6)) | |
Decimal('4') | |
""" | |
a = _convert_other(a, raiseit=True) | |
r = a.__mod__(b, context=self) | |
if r is NotImplemented: | |
raise TypeError("Unable to convert %s to Decimal" % b) | |
else: | |
return r | |
def remainder_near(self, a, b): | |
"""Returns to be "a - b * n", where n is the integer nearest the exact | |
value of "x / b" (if two integers are equally near then the even one | |
is chosen). If the result is equal to 0 then its sign will be the | |
sign of a. | |
This operation will fail under the same conditions as integer division | |
(that is, if integer division on the same two operands would fail, the | |
remainder cannot be calculated). | |
>>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) | |
Decimal('-0.9') | |
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) | |
Decimal('-2') | |
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) | |
Decimal('1') | |
>>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) | |
Decimal('-1') | |
>>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) | |
Decimal('0.2') | |
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) | |
Decimal('0.1') | |
>>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) | |
Decimal('-0.3') | |
>>> ExtendedContext.remainder_near(3, 11) | |
Decimal('3') | |
>>> ExtendedContext.remainder_near(Decimal(3), 11) | |
Decimal('3') | |
>>> ExtendedContext.remainder_near(3, Decimal(11)) | |
Decimal('3') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.remainder_near(b, context=self) | |
def rotate(self, a, b): | |
"""Returns a rotated copy of a, b times. | |
The coefficient of the result is a rotated copy of the digits in | |
the coefficient of the first operand. The number of places of | |
rotation is taken from the absolute value of the second operand, | |
with the rotation being to the left if the second operand is | |
positive or to the right otherwise. | |
>>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) | |
Decimal('400000003') | |
>>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) | |
Decimal('12') | |
>>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) | |
Decimal('891234567') | |
>>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) | |
Decimal('123456789') | |
>>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) | |
Decimal('345678912') | |
>>> ExtendedContext.rotate(1333333, 1) | |
Decimal('13333330') | |
>>> ExtendedContext.rotate(Decimal(1333333), 1) | |
Decimal('13333330') | |
>>> ExtendedContext.rotate(1333333, Decimal(1)) | |
Decimal('13333330') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.rotate(b, context=self) | |
def same_quantum(self, a, b): | |
"""Returns True if the two operands have the same exponent. | |
The result is never affected by either the sign or the coefficient of | |
either operand. | |
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) | |
False | |
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) | |
True | |
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) | |
False | |
>>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) | |
True | |
>>> ExtendedContext.same_quantum(10000, -1) | |
True | |
>>> ExtendedContext.same_quantum(Decimal(10000), -1) | |
True | |
>>> ExtendedContext.same_quantum(10000, Decimal(-1)) | |
True | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.same_quantum(b) | |
def scaleb (self, a, b): | |
"""Returns the first operand after adding the second value its exp. | |
>>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) | |
Decimal('0.0750') | |
>>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) | |
Decimal('7.50') | |
>>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) | |
Decimal('7.50E+3') | |
>>> ExtendedContext.scaleb(1, 4) | |
Decimal('1E+4') | |
>>> ExtendedContext.scaleb(Decimal(1), 4) | |
Decimal('1E+4') | |
>>> ExtendedContext.scaleb(1, Decimal(4)) | |
Decimal('1E+4') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.scaleb(b, context=self) | |
def shift(self, a, b): | |
"""Returns a shifted copy of a, b times. | |
The coefficient of the result is a shifted copy of the digits | |
in the coefficient of the first operand. The number of places | |
to shift is taken from the absolute value of the second operand, | |
with the shift being to the left if the second operand is | |
positive or to the right otherwise. Digits shifted into the | |
coefficient are zeros. | |
>>> ExtendedContext.shift(Decimal('34'), Decimal('8')) | |
Decimal('400000000') | |
>>> ExtendedContext.shift(Decimal('12'), Decimal('9')) | |
Decimal('0') | |
>>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) | |
Decimal('1234567') | |
>>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) | |
Decimal('123456789') | |
>>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) | |
Decimal('345678900') | |
>>> ExtendedContext.shift(88888888, 2) | |
Decimal('888888800') | |
>>> ExtendedContext.shift(Decimal(88888888), 2) | |
Decimal('888888800') | |
>>> ExtendedContext.shift(88888888, Decimal(2)) | |
Decimal('888888800') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.shift(b, context=self) | |
def sqrt(self, a): | |
"""Square root of a non-negative number to context precision. | |
If the result must be inexact, it is rounded using the round-half-even | |
algorithm. | |
>>> ExtendedContext.sqrt(Decimal('0')) | |
Decimal('0') | |
>>> ExtendedContext.sqrt(Decimal('-0')) | |
Decimal('-0') | |
>>> ExtendedContext.sqrt(Decimal('0.39')) | |
Decimal('0.624499800') | |
>>> ExtendedContext.sqrt(Decimal('100')) | |
Decimal('10') | |
>>> ExtendedContext.sqrt(Decimal('1')) | |
Decimal('1') | |
>>> ExtendedContext.sqrt(Decimal('1.0')) | |
Decimal('1.0') | |
>>> ExtendedContext.sqrt(Decimal('1.00')) | |
Decimal('1.0') | |
>>> ExtendedContext.sqrt(Decimal('7')) | |
Decimal('2.64575131') | |
>>> ExtendedContext.sqrt(Decimal('10')) | |
Decimal('3.16227766') | |
>>> ExtendedContext.sqrt(2) | |
Decimal('1.41421356') | |
>>> ExtendedContext.prec | |
9 | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.sqrt(context=self) | |
def subtract(self, a, b): | |
"""Return the difference between the two operands. | |
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) | |
Decimal('0.23') | |
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) | |
Decimal('0.00') | |
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) | |
Decimal('-0.77') | |
>>> ExtendedContext.subtract(8, 5) | |
Decimal('3') | |
>>> ExtendedContext.subtract(Decimal(8), 5) | |
Decimal('3') | |
>>> ExtendedContext.subtract(8, Decimal(5)) | |
Decimal('3') | |
""" | |
a = _convert_other(a, raiseit=True) | |
r = a.__sub__(b, context=self) | |
if r is NotImplemented: | |
raise TypeError("Unable to convert %s to Decimal" % b) | |
else: | |
return r | |
def to_eng_string(self, a): | |
"""Convert to a string, using engineering notation if an exponent is needed. | |
Engineering notation has an exponent which is a multiple of 3. This | |
can leave up to 3 digits to the left of the decimal place and may | |
require the addition of either one or two trailing zeros. | |
The operation is not affected by the context. | |
>>> ExtendedContext.to_eng_string(Decimal('123E+1')) | |
'1.23E+3' | |
>>> ExtendedContext.to_eng_string(Decimal('123E+3')) | |
'123E+3' | |
>>> ExtendedContext.to_eng_string(Decimal('123E-10')) | |
'12.3E-9' | |
>>> ExtendedContext.to_eng_string(Decimal('-123E-12')) | |
'-123E-12' | |
>>> ExtendedContext.to_eng_string(Decimal('7E-7')) | |
'700E-9' | |
>>> ExtendedContext.to_eng_string(Decimal('7E+1')) | |
'70' | |
>>> ExtendedContext.to_eng_string(Decimal('0E+1')) | |
'0.00E+3' | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.to_eng_string(context=self) | |
def to_sci_string(self, a): | |
"""Converts a number to a string, using scientific notation. | |
The operation is not affected by the context. | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.__str__(context=self) | |
def to_integral_exact(self, a): | |
"""Rounds to an integer. | |
When the operand has a negative exponent, the result is the same | |
as using the quantize() operation using the given operand as the | |
left-hand-operand, 1E+0 as the right-hand-operand, and the precision | |
of the operand as the precision setting; Inexact and Rounded flags | |
are allowed in this operation. The rounding mode is taken from the | |
context. | |
>>> ExtendedContext.to_integral_exact(Decimal('2.1')) | |
Decimal('2') | |
>>> ExtendedContext.to_integral_exact(Decimal('100')) | |
Decimal('100') | |
>>> ExtendedContext.to_integral_exact(Decimal('100.0')) | |
Decimal('100') | |
>>> ExtendedContext.to_integral_exact(Decimal('101.5')) | |
Decimal('102') | |
>>> ExtendedContext.to_integral_exact(Decimal('-101.5')) | |
Decimal('-102') | |
>>> ExtendedContext.to_integral_exact(Decimal('10E+5')) | |
Decimal('1.0E+6') | |
>>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) | |
Decimal('7.89E+77') | |
>>> ExtendedContext.to_integral_exact(Decimal('-Inf')) | |
Decimal('-Infinity') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.to_integral_exact(context=self) | |
def to_integral_value(self, a): | |
"""Rounds to an integer. | |
When the operand has a negative exponent, the result is the same | |
as using the quantize() operation using the given operand as the | |
left-hand-operand, 1E+0 as the right-hand-operand, and the precision | |
of the operand as the precision setting, except that no flags will | |
be set. The rounding mode is taken from the context. | |
>>> ExtendedContext.to_integral_value(Decimal('2.1')) | |
Decimal('2') | |
>>> ExtendedContext.to_integral_value(Decimal('100')) | |
Decimal('100') | |
>>> ExtendedContext.to_integral_value(Decimal('100.0')) | |
Decimal('100') | |
>>> ExtendedContext.to_integral_value(Decimal('101.5')) | |
Decimal('102') | |
>>> ExtendedContext.to_integral_value(Decimal('-101.5')) | |
Decimal('-102') | |
>>> ExtendedContext.to_integral_value(Decimal('10E+5')) | |
Decimal('1.0E+6') | |
>>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) | |
Decimal('7.89E+77') | |
>>> ExtendedContext.to_integral_value(Decimal('-Inf')) | |
Decimal('-Infinity') | |
""" | |
a = _convert_other(a, raiseit=True) | |
return a.to_integral_value(context=self) | |
# the method name changed, but we provide also the old one, for compatibility | |
to_integral = to_integral_value | |
class _WorkRep(object): | |
__slots__ = ('sign','int','exp') | |
# sign: 0 or 1 | |
# int: int | |
# exp: None, int, or string | |
def __init__(self, value=None): | |
if value is None: | |
self.sign = None | |
self.int = 0 | |
self.exp = None | |
elif isinstance(value, Decimal): | |
self.sign = value._sign | |
self.int = int(value._int) | |
self.exp = value._exp | |
else: | |
# assert isinstance(value, tuple) | |
self.sign = value[0] | |
self.int = value[1] | |
self.exp = value[2] | |
def __repr__(self): | |
return "(%r, %r, %r)" % (self.sign, self.int, self.exp) | |
def _normalize(op1, op2, prec = 0): | |
"""Normalizes op1, op2 to have the same exp and length of coefficient. | |
Done during addition. | |
""" | |
if op1.exp < op2.exp: | |
tmp = op2 | |
other = op1 | |
else: | |
tmp = op1 | |
other = op2 | |
# Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1). | |
# Then adding 10**exp to tmp has the same effect (after rounding) | |
# as adding any positive quantity smaller than 10**exp; similarly | |
# for subtraction. So if other is smaller than 10**exp we replace | |
# it with 10**exp. This avoids tmp.exp - other.exp getting too large. | |
tmp_len = len(str(tmp.int)) | |
other_len = len(str(other.int)) | |
exp = tmp.exp + min(-1, tmp_len - prec - 2) | |
if other_len + other.exp - 1 < exp: | |
other.int = 1 | |
other.exp = exp | |
tmp.int *= 10 ** (tmp.exp - other.exp) | |
tmp.exp = other.exp | |
return op1, op2 | |
##### Integer arithmetic functions used by ln, log10, exp and __pow__ ##### | |
_nbits = int.bit_length | |
def _decimal_lshift_exact(n, e): | |
""" Given integers n and e, return n * 10**e if it's an integer, else None. | |
The computation is designed to avoid computing large powers of 10 | |
unnecessarily. | |
>>> _decimal_lshift_exact(3, 4) | |
30000 | |
>>> _decimal_lshift_exact(300, -999999999) # returns None | |
""" | |
if n == 0: | |
return 0 | |
elif e >= 0: | |
return n * 10**e | |
else: | |
# val_n = largest power of 10 dividing n. | |
str_n = str(abs(n)) | |
val_n = len(str_n) - len(str_n.rstrip('0')) | |
return None if val_n < -e else n // 10**-e | |
def _sqrt_nearest(n, a): | |
"""Closest integer to the square root of the positive integer n. a is | |
an initial approximation to the square root. Any positive integer | |
will do for a, but the closer a is to the square root of n the | |
faster convergence will be. | |
""" | |
if n <= 0 or a <= 0: | |
raise ValueError("Both arguments to _sqrt_nearest should be positive.") | |
b=0 | |
while a != b: | |
b, a = a, a--n//a>>1 | |
return a | |
def _rshift_nearest(x, shift): | |
"""Given an integer x and a nonnegative integer shift, return closest | |
integer to x / 2**shift; use round-to-even in case of a tie. | |
""" | |
b, q = 1 << shift, x >> shift | |
return q + (2*(x & (b-1)) + (q&1) > b) | |
def _div_nearest(a, b): | |
"""Closest integer to a/b, a and b positive integers; rounds to even | |
in the case of a tie. | |
""" | |
q, r = divmod(a, b) | |
return q + (2*r + (q&1) > b) | |
def _ilog(x, M, L = 8): | |
"""Integer approximation to M*log(x/M), with absolute error boundable | |
in terms only of x/M. | |
Given positive integers x and M, return an integer approximation to | |
M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference | |
between the approximation and the exact result is at most 22. For | |
L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In | |
both cases these are upper bounds on the error; it will usually be | |
much smaller.""" | |
# The basic algorithm is the following: let log1p be the function | |
# log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use | |
# the reduction | |
# | |
# log1p(y) = 2*log1p(y/(1+sqrt(1+y))) | |
# | |
# repeatedly until the argument to log1p is small (< 2**-L in | |
# absolute value). For small y we can use the Taylor series | |
# expansion | |
# | |
# log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T | |
# | |
# truncating at T such that y**T is small enough. The whole | |
# computation is carried out in a form of fixed-point arithmetic, | |
# with a real number z being represented by an integer | |
# approximation to z*M. To avoid loss of precision, the y below | |
# is actually an integer approximation to 2**R*y*M, where R is the | |
# number of reductions performed so far. | |
y = x-M | |
# argument reduction; R = number of reductions performed | |
R = 0 | |
while (R <= L and abs(y) << L-R >= M or | |
R > L and abs(y) >> R-L >= M): | |
y = _div_nearest((M*y) << 1, | |
M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M)) | |
R += 1 | |
# Taylor series with T terms | |
T = -int(-10*len(str(M))//(3*L)) | |
yshift = _rshift_nearest(y, R) | |
w = _div_nearest(M, T) | |
for k in range(T-1, 0, -1): | |
w = _div_nearest(M, k) - _div_nearest(yshift*w, M) | |
return _div_nearest(w*y, M) | |
def _dlog10(c, e, p): | |
"""Given integers c, e and p with c > 0, p >= 0, compute an integer | |
approximation to 10**p * log10(c*10**e), with an absolute error of | |
at most 1. Assumes that c*10**e is not exactly 1.""" | |
# increase precision by 2; compensate for this by dividing | |
# final result by 100 | |
p += 2 | |
# write c*10**e as d*10**f with either: | |
# f >= 0 and 1 <= d <= 10, or | |
# f <= 0 and 0.1 <= d <= 1. | |
# Thus for c*10**e close to 1, f = 0 | |
l = len(str(c)) | |
f = e+l - (e+l >= 1) | |
if p > 0: | |
M = 10**p | |
k = e+p-f | |
if k >= 0: | |
c *= 10**k | |
else: | |
c = _div_nearest(c, 10**-k) | |
log_d = _ilog(c, M) # error < 5 + 22 = 27 | |
log_10 = _log10_digits(p) # error < 1 | |
log_d = _div_nearest(log_d*M, log_10) | |
log_tenpower = f*M # exact | |
else: | |
log_d = 0 # error < 2.31 | |
log_tenpower = _div_nearest(f, 10**-p) # error < 0.5 | |
return _div_nearest(log_tenpower+log_d, 100) | |
def _dlog(c, e, p): | |
"""Given integers c, e and p with c > 0, compute an integer | |
approximation to 10**p * log(c*10**e), with an absolute error of | |
at most 1. Assumes that c*10**e is not exactly 1.""" | |
# Increase precision by 2. The precision increase is compensated | |
# for at the end with a division by 100. | |
p += 2 | |
# rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10, | |
# or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e) | |
# as 10**p * log(d) + 10**p*f * log(10). | |
l = len(str(c)) | |
f = e+l - (e+l >= 1) | |
# compute approximation to 10**p*log(d), with error < 27 | |
if p > 0: | |
k = e+p-f | |
if k >= 0: | |
c *= 10**k | |
else: | |
c = _div_nearest(c, 10**-k) # error of <= 0.5 in c | |
# _ilog magnifies existing error in c by a factor of at most 10 | |
log_d = _ilog(c, 10**p) # error < 5 + 22 = 27 | |
else: | |
# p <= 0: just approximate the whole thing by 0; error < 2.31 | |
log_d = 0 | |
# compute approximation to f*10**p*log(10), with error < 11. | |
if f: | |
extra = len(str(abs(f)))-1 | |
if p + extra >= 0: | |
# error in f * _log10_digits(p+extra) < |f| * 1 = |f| | |
# after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11 | |
f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra) | |
else: | |
f_log_ten = 0 | |
else: | |
f_log_ten = 0 | |
# error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1 | |
return _div_nearest(f_log_ten + log_d, 100) | |
class _Log10Memoize(object): | |
"""Class to compute, store, and allow retrieval of, digits of the | |
constant log(10) = 2.302585.... This constant is needed by | |
Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.""" | |
def __init__(self): | |
self.digits = "23025850929940456840179914546843642076011014886" | |
def getdigits(self, p): | |
"""Given an integer p >= 0, return floor(10**p)*log(10). | |
For example, self.getdigits(3) returns 2302. | |
""" | |
# digits are stored as a string, for quick conversion to | |
# integer in the case that we've already computed enough | |
# digits; the stored digits should always be correct | |
# (truncated, not rounded to nearest). | |
if p < 0: | |
raise ValueError("p should be nonnegative") | |
if p >= len(self.digits): | |
# compute p+3, p+6, p+9, ... digits; continue until at | |
# least one of the extra digits is nonzero | |
extra = 3 | |
while True: | |
# compute p+extra digits, correct to within 1ulp | |
M = 10**(p+extra+2) | |
digits = str(_div_nearest(_ilog(10*M, M), 100)) | |
if digits[-extra:] != '0'*extra: | |
break | |
extra += 3 | |
# keep all reliable digits so far; remove trailing zeros | |
# and next nonzero digit | |
self.digits = digits.rstrip('0')[:-1] | |
return int(self.digits[:p+1]) | |
_log10_digits = _Log10Memoize().getdigits | |
def _iexp(x, M, L=8): | |
"""Given integers x and M, M > 0, such that x/M is small in absolute | |
value, compute an integer approximation to M*exp(x/M). For 0 <= | |
x/M <= 2.4, the absolute error in the result is bounded by 60 (and | |
is usually much smaller).""" | |
# Algorithm: to compute exp(z) for a real number z, first divide z | |
# by a suitable power R of 2 so that |z/2**R| < 2**-L. Then | |
# compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor | |
# series | |
# | |
# expm1(x) = x + x**2/2! + x**3/3! + ... | |
# | |
# Now use the identity | |
# | |
# expm1(2x) = expm1(x)*(expm1(x)+2) | |
# | |
# R times to compute the sequence expm1(z/2**R), | |
# expm1(z/2**(R-1)), ... , exp(z/2), exp(z). | |
# Find R such that x/2**R/M <= 2**-L | |
R = _nbits((x<<L)//M) | |
# Taylor series. (2**L)**T > M | |
T = -int(-10*len(str(M))//(3*L)) | |
y = _div_nearest(x, T) | |
Mshift = M<<R | |
for i in range(T-1, 0, -1): | |
y = _div_nearest(x*(Mshift + y), Mshift * i) | |
# Expansion | |
for k in range(R-1, -1, -1): | |
Mshift = M<<(k+2) | |
y = _div_nearest(y*(y+Mshift), Mshift) | |
return M+y | |
def _dexp(c, e, p): | |
"""Compute an approximation to exp(c*10**e), with p decimal places of | |
precision. | |
Returns integers d, f such that: | |
10**(p-1) <= d <= 10**p, and | |
(d-1)*10**f < exp(c*10**e) < (d+1)*10**f | |
In other words, d*10**f is an approximation to exp(c*10**e) with p | |
digits of precision, and with an error in d of at most 1. This is | |
almost, but not quite, the same as the error being < 1ulp: when d | |
= 10**(p-1) the error could be up to 10 ulp.""" | |
# we'll call iexp with M = 10**(p+2), giving p+3 digits of precision | |
p += 2 | |
# compute log(10) with extra precision = adjusted exponent of c*10**e | |
extra = max(0, e + len(str(c)) - 1) | |
q = p + extra | |
# compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q), | |
# rounding down | |
shift = e+q | |
if shift >= 0: | |
cshift = c*10**shift | |
else: | |
cshift = c//10**-shift | |
quot, rem = divmod(cshift, _log10_digits(q)) | |
# reduce remainder back to original precision | |
rem = _div_nearest(rem, 10**extra) | |
# error in result of _iexp < 120; error after division < 0.62 | |
return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3 | |
def _dpower(xc, xe, yc, ye, p): | |
"""Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and | |
y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that: | |
10**(p-1) <= c <= 10**p, and | |
(c-1)*10**e < x**y < (c+1)*10**e | |
in other words, c*10**e is an approximation to x**y with p digits | |
of precision, and with an error in c of at most 1. (This is | |
almost, but not quite, the same as the error being < 1ulp: when c | |
== 10**(p-1) we can only guarantee error < 10ulp.) | |
We assume that: x is positive and not equal to 1, and y is nonzero. | |
""" | |
# Find b such that 10**(b-1) <= |y| <= 10**b | |
b = len(str(abs(yc))) + ye | |
# log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point | |
lxc = _dlog(xc, xe, p+b+1) | |
# compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1) | |
shift = ye-b | |
if shift >= 0: | |
pc = lxc*yc*10**shift | |
else: | |
pc = _div_nearest(lxc*yc, 10**-shift) | |
if pc == 0: | |
# we prefer a result that isn't exactly 1; this makes it | |
# easier to compute a correctly rounded result in __pow__ | |
if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1: | |
coeff, exp = 10**(p-1)+1, 1-p | |
else: | |
coeff, exp = 10**p-1, -p | |
else: | |
coeff, exp = _dexp(pc, -(p+1), p+1) | |
coeff = _div_nearest(coeff, 10) | |
exp += 1 | |
return coeff, exp | |
def _log10_lb(c, correction = { | |
'1': 100, '2': 70, '3': 53, '4': 40, '5': 31, | |
'6': 23, '7': 16, '8': 10, '9': 5}): | |
"""Compute a lower bound for 100*log10(c) for a positive integer c.""" | |
if c <= 0: | |
raise ValueError("The argument to _log10_lb should be nonnegative.") | |
str_c = str(c) | |
return 100*len(str_c) - correction[str_c[0]] | |
##### Helper Functions #################################################### | |
def _convert_other(other, raiseit=False, allow_float=False): | |
"""Convert other to Decimal. | |
Verifies that it's ok to use in an implicit construction. | |
If allow_float is true, allow conversion from float; this | |
is used in the comparison methods (__eq__ and friends). | |
""" | |
if isinstance(other, Decimal): | |
return other | |
if isinstance(other, int): | |
return Decimal(other) | |
if allow_float and isinstance(other, float): | |
return Decimal.from_float(other) | |
if raiseit: | |
raise TypeError("Unable to convert %s to Decimal" % other) | |
return NotImplemented | |
def _convert_for_comparison(self, other, equality_op=False): | |
"""Given a Decimal instance self and a Python object other, return | |
a pair (s, o) of Decimal instances such that "s op o" is | |
equivalent to "self op other" for any of the 6 comparison | |
operators "op". | |
""" | |
if isinstance(other, Decimal): | |
return self, other | |
# Comparison with a Rational instance (also includes integers): | |
# self op n/d <=> self*d op n (for n and d integers, d positive). | |
# A NaN or infinity can be left unchanged without affecting the | |
# comparison result. | |
if isinstance(other, _numbers.Rational): | |
if not self._is_special: | |
self = _dec_from_triple(self._sign, | |
str(int(self._int) * other.denominator), | |
self._exp) | |
return self, Decimal(other.numerator) | |
# Comparisons with float and complex types. == and != comparisons | |
# with complex numbers should succeed, returning either True or False | |
# as appropriate. Other comparisons return NotImplemented. | |
if equality_op and isinstance(other, _numbers.Complex) and other.imag == 0: | |
other = other.real | |
if isinstance(other, float): | |
context = getcontext() | |
if equality_op: | |
context.flags[FloatOperation] = 1 | |
else: | |
context._raise_error(FloatOperation, | |
"strict semantics for mixing floats and Decimals are enabled") | |
return self, Decimal.from_float(other) | |
return NotImplemented, NotImplemented | |
##### Setup Specific Contexts ############################################ | |
# The default context prototype used by Context() | |
# Is mutable, so that new contexts can have different default values | |
DefaultContext = Context( | |
prec=28, rounding=ROUND_HALF_EVEN, | |
traps=[DivisionByZero, Overflow, InvalidOperation], | |
flags=[], | |
Emax=999999, | |
Emin=-999999, | |
capitals=1, | |
clamp=0 | |
) | |
# Pre-made alternate contexts offered by the specification | |
# Don't change these; the user should be able to select these | |
# contexts and be able to reproduce results from other implementations | |
# of the spec. | |
BasicContext = Context( | |
prec=9, rounding=ROUND_HALF_UP, | |
traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow], | |
flags=[], | |
) | |
ExtendedContext = Context( | |
prec=9, rounding=ROUND_HALF_EVEN, | |
traps=[], | |
flags=[], | |
) | |
##### crud for parsing strings ############################################# | |
# | |
# Regular expression used for parsing numeric strings. Additional | |
# comments: | |
# | |
# 1. Uncomment the two '\s*' lines to allow leading and/or trailing | |
# whitespace. But note that the specification disallows whitespace in | |
# a numeric string. | |
# | |
# 2. For finite numbers (not infinities and NaNs) the body of the | |
# number between the optional sign and the optional exponent must have | |
# at least one decimal digit, possibly after the decimal point. The | |
# lookahead expression '(?=\d|\.\d)' checks this. | |
import re | |
_parser = re.compile(r""" # A numeric string consists of: | |
# \s* | |
(?P<sign>[-+])? # an optional sign, followed by either... | |
( | |
(?=\d|\.\d) # ...a number (with at least one digit) | |
(?P<int>\d*) # having a (possibly empty) integer part | |
(\.(?P<frac>\d*))? # followed by an optional fractional part | |
(E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or... | |
| | |
Inf(inity)? # ...an infinity, or... | |
| | |
(?P<signal>s)? # ...an (optionally signaling) | |
NaN # NaN | |
(?P<diag>\d*) # with (possibly empty) diagnostic info. | |
) | |
# \s* | |
\Z | |
""", re.VERBOSE | re.IGNORECASE).match | |
_all_zeros = re.compile('0*$').match | |
_exact_half = re.compile('50*$').match | |
##### PEP3101 support functions ############################################## | |
# The functions in this section have little to do with the Decimal | |
# class, and could potentially be reused or adapted for other pure | |
# Python numeric classes that want to implement __format__ | |
# | |
# A format specifier for Decimal looks like: | |
# | |
# [[fill]align][sign][#][0][minimumwidth][,][.precision][type] | |
_parse_format_specifier_regex = re.compile(r"""\A | |
(?: | |
(?P<fill>.)? | |
(?P<align>[<>=^]) | |
)? | |
(?P<sign>[-+ ])? | |
(?P<alt>\#)? | |
(?P<zeropad>0)? | |
(?P<minimumwidth>(?!0)\d+)? | |
(?P<thousands_sep>,)? | |
(?:\.(?P<precision>0|(?!0)\d+))? | |
(?P<type>[eEfFgGn%])? | |
\Z | |
""", re.VERBOSE|re.DOTALL) | |
del re | |
# The locale module is only needed for the 'n' format specifier. The | |
# rest of the PEP 3101 code functions quite happily without it, so we | |
# don't care too much if locale isn't present. | |
try: | |
import locale as _locale | |
except ImportError: | |
pass | |
def _parse_format_specifier(format_spec, _localeconv=None): | |
"""Parse and validate a format specifier. | |
Turns a standard numeric format specifier into a dict, with the | |
following entries: | |
fill: fill character to pad field to minimum width | |
align: alignment type, either '<', '>', '=' or '^' | |
sign: either '+', '-' or ' ' | |
minimumwidth: nonnegative integer giving minimum width | |
zeropad: boolean, indicating whether to pad with zeros | |
thousands_sep: string to use as thousands separator, or '' | |
grouping: grouping for thousands separators, in format | |
used by localeconv | |
decimal_point: string to use for decimal point | |
precision: nonnegative integer giving precision, or None | |
type: one of the characters 'eEfFgG%', or None | |
""" | |
m = _parse_format_specifier_regex.match(format_spec) | |
if m is None: | |
raise ValueError("Invalid format specifier: " + format_spec) | |
# get the dictionary | |
format_dict = m.groupdict() | |
# zeropad; defaults for fill and alignment. If zero padding | |
# is requested, the fill and align fields should be absent. | |
fill = format_dict['fill'] | |
align = format_dict['align'] | |
format_dict['zeropad'] = (format_dict['zeropad'] is not None) | |
if format_dict['zeropad']: | |
if fill is not None: | |
raise ValueError("Fill character conflicts with '0'" | |
" in format specifier: " + format_spec) | |
if align is not None: | |
raise ValueError("Alignment conflicts with '0' in " | |
"format specifier: " + format_spec) | |
format_dict['fill'] = fill or ' ' | |
# PEP 3101 originally specified that the default alignment should | |
# be left; it was later agreed that right-aligned makes more sense | |
# for numeric types. See http://bugs.python.org/issue6857. | |
format_dict['align'] = align or '>' | |
# default sign handling: '-' for negative, '' for positive | |
if format_dict['sign'] is None: | |
format_dict['sign'] = '-' | |
# minimumwidth defaults to 0; precision remains None if not given | |
format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0') | |
if format_dict['precision'] is not None: | |
format_dict['precision'] = int(format_dict['precision']) | |
# if format type is 'g' or 'G' then a precision of 0 makes little | |
# sense; convert it to 1. Same if format type is unspecified. | |
if format_dict['precision'] == 0: | |
if format_dict['type'] is None or format_dict['type'] in 'gGn': | |
format_dict['precision'] = 1 | |
# determine thousands separator, grouping, and decimal separator, and | |
# add appropriate entries to format_dict | |
if format_dict['type'] == 'n': | |
# apart from separators, 'n' behaves just like 'g' | |
format_dict['type'] = 'g' | |
if _localeconv is None: | |
_localeconv = _locale.localeconv() | |
if format_dict['thousands_sep'] is not None: | |
raise ValueError("Explicit thousands separator conflicts with " | |
"'n' type in format specifier: " + format_spec) | |
format_dict['thousands_sep'] = _localeconv['thousands_sep'] | |
format_dict['grouping'] = _localeconv['grouping'] | |
format_dict['decimal_point'] = _localeconv['decimal_point'] | |
else: | |
if format_dict['thousands_sep'] is None: | |
format_dict['thousands_sep'] = '' | |
format_dict['grouping'] = [3, 0] | |
format_dict['decimal_point'] = '.' | |
return format_dict | |
def _format_align(sign, body, spec): | |
"""Given an unpadded, non-aligned numeric string 'body' and sign | |
string 'sign', add padding and alignment conforming to the given | |
format specifier dictionary 'spec' (as produced by | |
parse_format_specifier). | |
""" | |
# how much extra space do we have to play with? | |
minimumwidth = spec['minimumwidth'] | |
fill = spec['fill'] | |
padding = fill*(minimumwidth - len(sign) - len(body)) | |
align = spec['align'] | |
if align == '<': | |
result = sign + body + padding | |
elif align == '>': | |
result = padding + sign + body | |
elif align == '=': | |
result = sign + padding + body | |
elif align == '^': | |
half = len(padding)//2 | |
result = padding[:half] + sign + body + padding[half:] | |
else: | |
raise ValueError('Unrecognised alignment field') | |
return result | |
def _group_lengths(grouping): | |
"""Convert a localeconv-style grouping into a (possibly infinite) | |
iterable of integers representing group lengths. | |
""" | |
# The result from localeconv()['grouping'], and the input to this | |
# function, should be a list of integers in one of the | |
# following three forms: | |
# | |
# (1) an empty list, or | |
# (2) nonempty list of positive integers + [0] | |
# (3) list of positive integers + [locale.CHAR_MAX], or | |
from itertools import chain, repeat | |
if not grouping: | |
return [] | |
elif grouping[-1] == 0 and len(grouping) >= 2: | |
return chain(grouping[:-1], repeat(grouping[-2])) | |
elif grouping[-1] == _locale.CHAR_MAX: | |
return grouping[:-1] | |
else: | |
raise ValueError('unrecognised format for grouping') | |
def _insert_thousands_sep(digits, spec, min_width=1): | |
"""Insert thousands separators into a digit string. | |
spec is a dictionary whose keys should include 'thousands_sep' and | |
'grouping'; typically it's the result of parsing the format | |
specifier using _parse_format_specifier. | |
The min_width keyword argument gives the minimum length of the | |
result, which will be padded on the left with zeros if necessary. | |
If necessary, the zero padding adds an extra '0' on the left to | |
avoid a leading thousands separator. For example, inserting | |
commas every three digits in '123456', with min_width=8, gives | |
'0,123,456', even though that has length 9. | |
""" | |
sep = spec['thousands_sep'] | |
grouping = spec['grouping'] | |
groups = [] | |
for l in _group_lengths(grouping): | |
if l <= 0: | |
raise ValueError("group length should be positive") | |
# max(..., 1) forces at least 1 digit to the left of a separator | |
l = min(max(len(digits), min_width, 1), l) | |
groups.append('0'*(l - len(digits)) + digits[-l:]) | |
digits = digits[:-l] | |
min_width -= l | |
if not digits and min_width <= 0: | |
break | |
min_width -= len(sep) | |
else: | |
l = max(len(digits), min_width, 1) | |
groups.append('0'*(l - len(digits)) + digits[-l:]) | |
return sep.join(reversed(groups)) | |
def _format_sign(is_negative, spec): | |
"""Determine sign character.""" | |
if is_negative: | |
return '-' | |
elif spec['sign'] in ' +': | |
return spec['sign'] | |
else: | |
return '' | |
def _format_number(is_negative, intpart, fracpart, exp, spec): | |
"""Format a number, given the following data: | |
is_negative: true if the number is negative, else false | |
intpart: string of digits that must appear before the decimal point | |
fracpart: string of digits that must come after the point | |
exp: exponent, as an integer | |
spec: dictionary resulting from parsing the format specifier | |
This function uses the information in spec to: | |
insert separators (decimal separator and thousands separators) | |
format the sign | |
format the exponent | |
add trailing '%' for the '%' type | |
zero-pad if necessary | |
fill and align if necessary | |
""" | |
sign = _format_sign(is_negative, spec) | |
if fracpart or spec['alt']: | |
fracpart = spec['decimal_point'] + fracpart | |
if exp != 0 or spec['type'] in 'eE': | |
echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']] | |
fracpart += "{0}{1:+}".format(echar, exp) | |
if spec['type'] == '%': | |
fracpart += '%' | |
if spec['zeropad']: | |
min_width = spec['minimumwidth'] - len(fracpart) - len(sign) | |
else: | |
min_width = 0 | |
intpart = _insert_thousands_sep(intpart, spec, min_width) | |
return _format_align(sign, intpart+fracpart, spec) | |
##### Useful Constants (internal use only) ################################ | |
# Reusable defaults | |
_Infinity = Decimal('Inf') | |
_NegativeInfinity = Decimal('-Inf') | |
_NaN = Decimal('NaN') | |
_Zero = Decimal(0) | |
_One = Decimal(1) | |
_NegativeOne = Decimal(-1) | |
# _SignedInfinity[sign] is infinity w/ that sign | |
_SignedInfinity = (_Infinity, _NegativeInfinity) | |
# Constants related to the hash implementation; hash(x) is based | |
# on the reduction of x modulo _PyHASH_MODULUS | |
_PyHASH_MODULUS = sys.hash_info.modulus | |
# hash values to use for positive and negative infinities, and nans | |
_PyHASH_INF = sys.hash_info.inf | |
_PyHASH_NAN = sys.hash_info.nan | |
# _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS | |
_PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) | |
del sys | |