Update app.py
Browse files
app.py
CHANGED
@@ -2,34 +2,45 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
-
#
|
6 |
def load_common_corpus():
|
7 |
try:
|
8 |
-
|
|
|
|
|
|
|
9 |
except Exception as e:
|
10 |
print(f"Error loading dataset: {e}")
|
11 |
return None
|
12 |
|
13 |
common_corpus = load_common_corpus()
|
14 |
|
15 |
-
# Retrieve an example
|
16 |
def get_example_from_corpus(dataset, index):
|
17 |
if dataset and "train" in dataset:
|
18 |
try:
|
19 |
return dataset["train"][index]
|
20 |
except IndexError:
|
21 |
-
print("Index out of range for dataset")
|
22 |
return {"text": "No example available"}
|
23 |
else:
|
24 |
-
|
|
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
33 |
def respond(
|
34 |
message,
|
35 |
history: list[tuple[str, str]],
|
@@ -43,50 +54,55 @@ def respond(
|
|
43 |
|
44 |
messages = [{"role": "system", "content": system_message}]
|
45 |
|
|
|
46 |
for val in history:
|
47 |
if val[0]:
|
48 |
messages.append({"role": "user", "content": val[0]})
|
49 |
if val[1]:
|
50 |
messages.append({"role": "assistant", "content": val[1]})
|
51 |
|
|
|
52 |
messages.append({"role": "user", "content": message})
|
53 |
|
54 |
try:
|
|
|
55 |
response = client.chat_completion(
|
56 |
messages,
|
57 |
max_tokens=max_tokens,
|
58 |
temperature=temperature,
|
59 |
top_p=top_p,
|
60 |
).choices[0].message.content
|
|
|
|
|
61 |
except Exception as e:
|
62 |
print(f"Error during inference: {e}")
|
63 |
-
|
64 |
-
|
65 |
-
return response
|
66 |
|
67 |
-
# Example: Retrieve an entry from the dataset
|
68 |
example_data = get_example_from_corpus(common_corpus, 0)
|
69 |
-
print("Example from
|
70 |
|
71 |
-
# Gradio interface
|
72 |
-
|
73 |
-
respond,
|
74 |
-
additional_inputs=[
|
75 |
-
gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"),
|
76 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
77 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
78 |
-
gr.Slider(
|
79 |
-
minimum=0.1,
|
80 |
-
maximum=1.0,
|
81 |
-
value=0.95,
|
82 |
-
step=0.05,
|
83 |
-
label="Top-p (nucleus sampling)",
|
84 |
-
),
|
85 |
-
],
|
86 |
-
)
|
87 |
-
|
88 |
-
if __name__ == "__main__":
|
89 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
demo.launch()
|
91 |
except Exception as e:
|
92 |
-
print(f"Error launching Gradio app: {e}")
|
|
|
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
+
# Safely load the PleIAs/common_corpus dataset
|
6 |
def load_common_corpus():
|
7 |
try:
|
8 |
+
print("Loading dataset...")
|
9 |
+
dataset = load_dataset("PleIAs/common_corpus")
|
10 |
+
print("Dataset loaded successfully!")
|
11 |
+
return dataset
|
12 |
except Exception as e:
|
13 |
print(f"Error loading dataset: {e}")
|
14 |
return None
|
15 |
|
16 |
common_corpus = load_common_corpus()
|
17 |
|
18 |
+
# Retrieve an example safely
|
19 |
def get_example_from_corpus(dataset, index):
|
20 |
if dataset and "train" in dataset:
|
21 |
try:
|
22 |
return dataset["train"][index]
|
23 |
except IndexError:
|
24 |
+
print("Index out of range for dataset.")
|
25 |
return {"text": "No example available"}
|
26 |
else:
|
27 |
+
print("Dataset not loaded correctly.")
|
28 |
+
return {"text": "Dataset not available."}
|
29 |
|
30 |
+
# Safely initialize the inference client
|
31 |
+
def initialize_client():
|
32 |
+
try:
|
33 |
+
print("Initializing inference client...")
|
34 |
+
client = InferenceClient("unsloth/Llama-3.2-1B-Instruct")
|
35 |
+
print("Inference client initialized successfully!")
|
36 |
+
return client
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error initializing inference client: {e}")
|
39 |
+
return None
|
40 |
+
|
41 |
+
client = initialize_client()
|
42 |
|
43 |
+
# Chatbot response logic
|
44 |
def respond(
|
45 |
message,
|
46 |
history: list[tuple[str, str]],
|
|
|
54 |
|
55 |
messages = [{"role": "system", "content": system_message}]
|
56 |
|
57 |
+
# Add historical interactions
|
58 |
for val in history:
|
59 |
if val[0]:
|
60 |
messages.append({"role": "user", "content": val[0]})
|
61 |
if val[1]:
|
62 |
messages.append({"role": "assistant", "content": val[1]})
|
63 |
|
64 |
+
# Add user message
|
65 |
messages.append({"role": "user", "content": message})
|
66 |
|
67 |
try:
|
68 |
+
print("Sending request to model...")
|
69 |
response = client.chat_completion(
|
70 |
messages,
|
71 |
max_tokens=max_tokens,
|
72 |
temperature=temperature,
|
73 |
top_p=top_p,
|
74 |
).choices[0].message.content
|
75 |
+
print("Response received successfully!")
|
76 |
+
return response
|
77 |
except Exception as e:
|
78 |
print(f"Error during inference: {e}")
|
79 |
+
return "An error occurred while generating a response."
|
|
|
|
|
80 |
|
81 |
+
# Example: Retrieve an entry from the dataset
|
82 |
example_data = get_example_from_corpus(common_corpus, 0)
|
83 |
+
print("Example from dataset:", example_data)
|
84 |
|
85 |
+
# Gradio interface
|
86 |
+
def launch_demo():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
try:
|
88 |
+
demo = gr.ChatInterface(
|
89 |
+
respond,
|
90 |
+
additional_inputs=[
|
91 |
+
gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"),
|
92 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
93 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
94 |
+
gr.Slider(
|
95 |
+
minimum=0.1,
|
96 |
+
maximum=1.0,
|
97 |
+
value=0.95,
|
98 |
+
step=0.05,
|
99 |
+
label="Top-p (nucleus sampling)",
|
100 |
+
),
|
101 |
+
],
|
102 |
+
)
|
103 |
demo.launch()
|
104 |
except Exception as e:
|
105 |
+
print(f"Error launching Gradio app: {e}")
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
launch_demo()
|