AiLERT / app.py
thushalya
Add round for percentages
957c702
raw
history blame
17.8 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AutoModel
import re
from textblob import TextBlob
from nltk import pos_tag, word_tokenize
from nltk.corpus import stopwords
import emoji
import string
import nltk
from nltk import pos_tag
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import textstat
import pandas as pd
from transformers import pipeline
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import os
from dotenv import load_dotenv
import pandas as pd
load_dotenv()
#Loading author details
def average_word_length(tweet):
words = tweet.split()
return sum(len(word) for word in words) / len(words)
def lexical_diversity(tweet):
words = tweet.split()
unique_words = set(words)
return len(unique_words) / len(words)
def count_capital_letters(tweet):
return sum(1 for char in tweet if char.isupper())
def count_words_surrounded_by_colons(tweet):
# Define a regular expression pattern to match words surrounded by ':'
pattern = r':(\w+):'
# Use re.findall to find all matches in the tweet
matches = re.findall(pattern, tweet)
# Return the count of matched words
return len(matches)
def count_emojis(tweet):
# Convert emoji symbols to their corresponding names
tweet_with_names = emoji.demojize(tweet)
return count_words_surrounded_by_colons(tweet_with_names)
def hashtag_frequency(tweet):
hashtags = re.findall(r'#\w+', tweet)
return len(hashtags)
def mention_frequency(tweet):
mentions = re.findall(r'@\w+', tweet)
return len(mentions)
def count_special_characters(tweet):
special_characters = [char for char in tweet if char in string.punctuation]
return len(special_characters)
def stop_word_frequency(tweet):
stop_words = set(stopwords.words('english'))
words = [word for word in tweet.split() if word.lower() in stop_words]
return len(words)
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
def get_linguistic_features(tweet):
# Tokenize the tweet
words = word_tokenize(tweet)
# Remove stopwords
stop_words = set(stopwords.words('english'))
filtered_words = [word.lower() for word in words if word.isalnum() and word.lower() not in stop_words]
# Get parts of speech tags
pos_tags = pos_tag(filtered_words)
# Count various linguistic features
noun_count = sum(1 for word, pos in pos_tags if pos.startswith('N'))
verb_count = sum(1 for word, pos in pos_tags if pos.startswith('V'))
participle_count = sum(1 for word, pos in pos_tags if pos.startswith('V') and ('ing' in word or 'ed' in word))
interjection_count = sum(1 for word, pos in pos_tags if pos == 'UH')
pronoun_count = sum(1 for word, pos in pos_tags if pos.startswith('PRP'))
preposition_count = sum(1 for word, pos in pos_tags if pos.startswith('IN'))
adverb_count = sum(1 for word, pos in pos_tags if pos.startswith('RB'))
conjunction_count = sum(1 for word, pos in pos_tags if pos.startswith('CC'))
return {
'Noun_Count': noun_count,
'Verb_Count': verb_count,
'Participle_Count': participle_count,
'Interjection_Count': interjection_count,
'Pronoun_Count': pronoun_count,
'Preposition_Count': preposition_count,
'Adverb_Count': adverb_count,
'Conjunction_Count': conjunction_count
}
def readability_score(tweet):
return textstat.flesch_reading_ease(tweet)
def get_url_frequency(tweet):
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', tweet)
return len(urls)
# Define a function to extract features from a single tweet
def extract_features(tweet):
features = {
'Average_Word_Length': average_word_length(tweet),
# 'Average_Sentence_Length': average_sentence_length(tweet),
'Lexical_Diversity': lexical_diversity(tweet),
'Capital_Letters_Count': count_capital_letters(tweet), # Uncomment if you want to include this feature
'Hashtag_Frequency': hashtag_frequency(tweet),
'Mention_Frequency': mention_frequency(tweet),
'count_emojis': count_emojis(tweet),
'special_chars_count': count_special_characters(tweet),
'Stop_Word_Frequency': stop_word_frequency(tweet),
**get_linguistic_features(tweet), # Include linguistic features
'Readability_Score': readability_score(tweet),
'URL_Frequency': get_url_frequency(tweet) # Assuming you have the correct function for this
}
return features
# # Extract features for all tweets
# features_list = [extract_features(tweet) for tweet in X['text']]
# # Create a Pandas DataFrame
# X_new = pd.DataFrame(features_list)
# Loading personality model
def personality_detection(text, threshold=0.05, endpoint= 1.0):
PERSONALITY_TOKEN =os.environ.get('PERSONALITY_TOKEN', None)
print(PERSONALITY_TOKEN)
tokenizer = AutoTokenizer.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
model = AutoModelForSequenceClassification.from_pretrained ("Nasserelsaman/microsoft-finetuned-personality",token=PERSONALITY_TOKEN)
with torch.no_grad():
inputs = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
outputs = model(**inputs)
predictions = outputs.logits.squeeze().detach().numpy()
# Get raw logits
logits = model(**inputs).logits
# Apply sigmoid to squash between 0 and 1
probabilities = torch.sigmoid(logits)
# # Set values less than the threshold to 0.05
# predictions[predictions < threshold] = 0.05
# predictions[predictions > endpoint] = 1.0
# print("per",probabilities[0][0].detach().numpy())
# print("per",probabilities[0][1].detach().numpy())
# print("per",probabilities[0][2].detach().numpy())
# print("per",probabilities[0][3].detach().numpy())
# print("per",probabilities[0][4].detach().numpy())
# label_names = ['Agreeableness', 'Conscientiousness', 'Extraversion', 'Neuroticism', 'Openness']
# # result = {label_names[i]: f"{predictions[i]*100:.0f}%" for i in range(len(label_names))}
# result = {label_names[i]: f"{probabilities}%" for i in range(len(label_names))}
# probabilities
print(probabilities)
return [probabilities[0][0].detach().numpy()
,probabilities[0][1].detach().numpy()
,probabilities[0][2].detach().numpy()
,probabilities[0][3].detach().numpy()
,probabilities[0][4].detach().numpy()]
# tokenizer = AutoTokenizer.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
# model = AutoModelForSequenceClassification.from_pretrained("Nasserelsaman/microsoft-finetuned-personality")
#Loading emotion model
# tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
# model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion-multilabel-latest")
##use this for gpu
# pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True,device=device )
##use this for cpu
def calc_emotion_score(tweet):
pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True )
emotions = pipe(tweet)[0]
for i in emotions:
print(i)
return [emotions[0]['score'],emotions[1]['score'],emotions[2]['score'],emotions[3]['score'],emotions[4]['score'],emotions[5]['score'],emotions[6]['score'],emotions[7]['score'],emotions[8]['score'],emotions[9]['score'],emotions[10]['score']]
#DCL model launching
def load_model(tweet):
# model = torch.load("./authormodel.pt",map_location ='cpu')
# print(model)
model_name = "vinai/bertweet-base"
PADDING_MAX_LENGTH = 45
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer(tweet, truncation=True, padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True, return_tensors="pt")
print(inputs)
emotion_list = calc_emotion_score(tweet)
print(emotion_list)
preemotion_list = emotion_list[:]
features_list = extract_features(tweet)
for i in features_list.values():
emotion_list.append(i)
print("emotion + author",emotion_list)
# print()
# print(features_list)
personality_list = personality_detection(tweet)
print("personality",personality_list)
# person_list = [personality_list["Extraversion"],personality_list['Neuroticism'],personality_list['Agreeableness'],personality_list['Conscientiousness'],personality_list['Openness']]
emotion_list.extend(personality_list)
print("final list",emotion_list)
# print(str(features_list["Average_Word_Length"]))
inputs['emotion_author_vector'] = torch.tensor([emotion_list])
print("final inputs ",inputs)
# []
# inputs["emotion_author_vector"] =
# train_dataloader=DataLoader(inputs, batch_size=1 , shuffle=False)
# print(train_dataloader)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# def tokenize_function(examples):
# return tokenizer.batch_encode_plus(examples["text"], padding='max_length',max_length=PADDING_MAX_LENGTH,add_special_tokens=True,truncation=True)
class EmotionAuthorGuidedDCLModel(nn.Module):
def __init__(self,dcl_model:nn.Module,dropout:float=0.5):
super(EmotionAuthorGuidedDCLModel, self).__init__()
self.dcl_model = dcl_model
self.dim = 802
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(self.dim, 1)
# Freeze all layers
for param in self.dcl_model.parameters():
param.requires_grad = False
def forward(self,batch_tokenized):
input_ids = batch_tokenized['input_ids']
attention_mask = batch_tokenized['attention_mask']
emotion_vector = batch_tokenized['emotion_author_vector']
bert_output = self.dcl_model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
bert_cls_hidden_state = bert_output[1]
combined_vector =torch.cat((bert_cls_hidden_state,emotion_vector), 1)
d_combined_vector=self.dropout(combined_vector)
linear_output = self.linear(d_combined_vector)
pred_linear = linear_output.squeeze(1)
return pred_linear
# twee
checkpoint = {
"model_state_dict":torch.load("./model.pt",map_location ='cpu') ,
}
# checkpoint=load_checkpoint(run=run_dcl_study,check_point_name="model_checkpoints/")
class DCLArchitecture(nn.Module):
def __init__(self,dropout:float,bert_model_name:str='vinai/bertweet-base'):
super(DCLArchitecture, self).__init__()
self.bert = AutoModel.from_pretrained(bert_model_name)
self.dim = 768
self.dense = nn.Linear(self.dim, 1)
self.dropout = nn.Dropout(dropout)
def forward(self,batch_tokenized, if_train=False):
input_ids = batch_tokenized['input_ids']
attention_mask = batch_tokenized['attention_mask']
bert_output = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
bert_cls_hidden_state = bert_output[1]
torch.cuda.empty_cache()
if if_train:
bert_cls_hidden_state_aug = self.dropout(bert_cls_hidden_state)
bert_cls_hidden_state = torch.cat((bert_cls_hidden_state, bert_cls_hidden_state_aug), dim=1).reshape(-1, self.dim)
else:
bert_cls_hidden_state = self.dropout(bert_cls_hidden_state)
linear_output = self.dense(bert_cls_hidden_state)
linear_output = linear_output.squeeze(1)
return bert_cls_hidden_state, linear_output
# dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=best_prams["DROPOUT"])
dcl_model = DCLArchitecture(bert_model_name=model_name,dropout=0.5)
dcl_model.to(device)
DROPOUT = 0.5
fined_tuned_bert_model=dcl_model.bert
model = EmotionAuthorGuidedDCLModel(dcl_model=fined_tuned_bert_model,dropout=DROPOUT)
model.to(device)
model.load_state_dict(checkpoint["model_state_dict"])
# def test_loop(model, test_dataloader, device):
# # collection_metric = MetricCollection(
# # BinaryAccuracy(),
# # MulticlassPrecision(num_classes=2,average=average),
# # MulticlassRecall(num_classes=2,average=average),
# # MulticlassF1Score(num_classes=2,average=average),
# # BinaryConfusionMatrix()
# # )
# # collection_metric.to(device)
# model.eval()
# print(test_dataloader)
# # total_test_loss = 0.0
# for batch in test_dataloader:
# print(batch)
# batch = {k: v.to(device) for k, v in batch.items()}
# # labels = batch["labels"]
# with torch.no_grad():
# pred = model(batch)
# # loss = criteon(pred, labels.float())
# pred = torch.round(torch.sigmoid(pred))
# return pred
# result_metrics=test_loop(model=model, test_dataloader=train_dataloader,device=device)
# print("Hate speech result",result_metrics)
def predict_single_text(model, inputs,device):
# Preprocess the text
# inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Pass the preprocessed text through the model
with torch.no_grad():
model.eval()
pred = model(inputs)
print("prediction ",pred)
print("sigmoid output",torch.sigmoid(pred))
pred = torch.sigmoid(pred)
# Assuming your model returns a single value for prediction
return pred
predicted_class = predict_single_text(model, inputs, device)
return predicted_class,preemotion_list,personality_list
# print("Hate speech result",predicted_class)
#Gradio interface
simple = None
personality_values =None
def greet(tweet):
print("start")
prediction,preemotion_list,personality_list = load_model(tweet)
# preemotion_list = [x * 100 for x in preemotion_list]
simple = pd.DataFrame(
{
"Emotions": ["Anger", "Anticipation", "Disgust", "Fear", "Joy", "Love", "Optimism", "Pessimism", "Sadness","Surprise","Trust"],
"Values": preemotion_list,
}
)
personality_values = pd.DataFrame(
{
"Personality": ['Agreeableness', 'Conscientiousness', 'Extraversion', 'Neuroticism', 'Openness'],
"Values": personality_list,
}
)
# with gr.Blocks() as bar_plot:
# bar_plot.load(outputs= gr.BarPlot(
# simple,
# x="Emotions",
# y="Values",
# title="Simple Bar Plot with made up data",
# tooltip=["a", "b"],
# y_lim=[20, 100],
# ))
# bar_plot.launch()
prediction_value = round(prediction.item(),2)
# features_list = extract_features(tweet)
# print(personality_detection(tweet))
# print(str(features_list["Average_Word_Length"]))
# print(calc_emotion_score(tweet))
predicted_class = torch.round(prediction).item()
print(preemotion_list)
print(personality_list)
print("end")
if (predicted_class==0.0):
label = "Non Hate"
else:
label = "Hate"
return label,str(round(prediction_value,2))+"%",str(round(1-prediction_value,2))+"%",simple,personality_values
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo = gr.Interface(theme= gr.themes.Soft(),
title = "Unmasking Hate: An Integrated Approach to Detecting Hate Speech in Social Media",
css="""
.gradio-container {background-color: #caf0f8}
""",
# live = True,
# fn=greet,
fn=greet, inputs=gr.Textbox(placeholder="Enter an input sentence...",label="Input Sentence"),
allow_flagging = "never",
outputs=[
gr.Label(label="Label"),
gr.Textbox(label="Hate Speech Percentage"),
gr.Textbox(label="Non Hate Speech Percentage"),
gr.BarPlot(
simple,
x="Emotions",
y="Values",
title="Emotion Analysis",
tooltip=["Emotions", "Values"],
y_lim=[0, 1],
label="Emotion bar graph"
),
gr.BarPlot(
personality_values,
x="Personality",
y="Values",
title="Personality Analysis",
tooltip=["Personality", "Values"],
y_lim=[0, 1],
label="Personality bar graph"
)
],
examples=[
["I like you"],
["I hate you"],
["I can't stand those asian always causing trouble. They need to go back to where they came from!"],
["Just saw a Sunni preaching on the street. Why don't they go worship in their own country instead of invading ours?"],
["I wish all bisexuals would just disappear. Sick of their agenda being shoved in our faces"],
["Had a great time celebrating diversity at the multicultural festival today!"],
["Congratulations to Sri Lankans for their cultural contributions to our society"],
["Love is love, no matter who you are or who you love"] ]
)
demo.launch()