ThornRugal's picture
Add application files and updated Readme
e5451b9 verified
raw
history blame
6.5 kB
import gradio as gr
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import faiss
import ast
import torch.nn.functional as F
import torch
from transformers import AutoModel, AutoTokenizer
Encoding_model = 'jinaai/jina-embeddings-v2-base-zh'
model = AutoModel.from_pretrained(Encoding_model, trust_remote_code=True, torch_dtype=torch.bfloat16)
model#.to("cuda")
similarity_model = 'Alibaba-NLP/gte-multilingual-base'
similarity_tokenizer = AutoTokenizer.from_pretrained(similarity_model)
similarity_model = AutoModel.from_pretrained(similarity_model, trust_remote_code=True)#.to("cuda")
def get_not_empty_data(df,x_column="text",y_column="label"):
df = df[df[y_column] != "[]"].reset_index(drop=True)
res_dict = {}
for idx in df.index:
if df.loc[idx,x_column] not in res_dict:
res_dict[df.loc[idx,x_column]] = ast.literal_eval(df.loc[idx,y_column])
else:
res_dict[df.loc[idx,x_column]] += ast.literal_eval(df.loc[idx,y_column])
res_dict = {k:list(set(v)) for k,v in res_dict.items()}
df_dict = pd.DataFrame({"x":res_dict.keys(),"y":res_dict.values()})
return df_dict
data_all = pd.read_excel("data_Excel_format.xlsx")
df_dict_all = get_not_empty_data(data_all)
x_dict = df_dict_all["x"].values
y_dict = df_dict_all["y"].values
def calc_scores(x):
return (x[:1] @ x[1:].T)
def get_idxs(threshold,max_len,arr):
res = np.where(arr >= threshold)[0]
if len(res)<max_len:
return res
res = res[np.argsort(-arr[res])][:3]
return res
def merge_set_to_list(set_list):
res = set()
for i in set_list:
res = res | i
return res
def get_predict_result(index,score,threshold,max_len):
score = score.flatten()
index = index.flatten()
index_of_index = np.where(score >= threshold)[0]
if len(index_of_index)>=max_len:
index_of_index = index_of_index[np.argsort(-index[index_of_index])][:3]
if len(index_of_index)==0:
return {},[]
res_index = index[index_of_index]
res = merge_set_to_list([set(i) for i in y_dict[res_index]])
return res,x_dict[res_index]
vec = np.empty(shape=[0,768],dtype="float32")
bsize = 256
with torch.no_grad():
for i in range(0,len(x),bsize):
tmp = model.encode(x[i:i+bsize])
vec = np.concatenate([vec,tmp])
index = faiss.IndexFlatIP(768)
faiss.normalize_L2(vec)
index.add(vec)
faiss.write_index(index,"all_index.faiss")
index = faiss.read_index("all_index.faiss")
def predict_label(x,threshold=0.85,n_nearest=10,max_result_len=3):
bsize=1
y_pred = []
with torch.no_grad():
for i in range(0,len(x),bsize):
sentences = x[i:i+bsize]
vec = model.encode(sentences)
faiss.normalize_L2(vec)
scores, indexes = index.search(vec,n_nearest)
x_pred = np.array([[sentences[j]]+s.tolist() for j,s in enumerate(x_dict[indexes])])
batch_dict = similarity_tokenizer(x_pred.flatten().tolist(), max_length=768, padding=True, truncation=True, return_tensors='pt')#.to("cuda")
outputs = similarity_model(**batch_dict)
dimension=768
embeddings = outputs.last_hidden_state[:, 0][:dimension]
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.view(len(x_pred),n_nearest+1,dimension).detach().cpu().numpy()
scores = [calc_scores(embeddings[b]) for b in range(embeddings.shape[0])]
pred = [get_predict_result(indexes[k],scores[k],threshold=threshold,max_len=max_result_len) for k in range(len(scores))]
y_pred.append([i[0] for i in pred])
return y_pred
CSS_Content = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
#custom_id {
border: 2px solid red;
padding: 10px;
background-color: lightgray;
}
</style>
</head>
</html>
<span style="color: red;line-height:1;">红色字体:潜在风险</span><br>
<span style="color: blue;line-height:1;">蓝色字体:权限获取</span><br>
<span style="color: purple;line-height:1;">紫色字体:数据收集</span><br>
<span style="color: green;line-height:1;">绿色字体:数据、权限管理</span><br>
<span style="color: brown;line-height:1;">棕色字体:共享、委托、转让、公开(披露)</span><br>
"""
color_dict = {"潜在风险":"red",
"权限获取":"blue",
"数据收集":"purple",
"数据、权限管理":"green",
"共享、委托、转让、公开(披露)":"brown"
}
def generate_HTML(text,threshold=0.85,n_nearest=10,max_result_len=3):
sentences = text.split("\n")
sentences = [i for i in map(lambda x:x.split("。"),sentences)]
res = CSS_Content
for paragraph in sentences:
tmp_res = []
pred_label = predict_label(paragraph,threshold,n_nearest,max_result_len)
for i,x in enumerate(pred_label):
pre = "<span"
if len(x[0])>0:
for j in color_dict.keys(): #color dict重要性递减,所以只取第一个标签的颜色
if j in x[0]:
pre += f' style="color: {color_dict[j]};line-height:1;"'
break
tmp_res.append(pre+">"+paragraph[i]+"</span>")
res += "。".join(tmp_res)
res += "<br>"
return res
with gr.Blocks() as demo:
with gr.Row():
input_text = gr.Textbox(lines=25,label="输入")
with gr.Row():
threshold = gr.Slider(minimum=0.5,maximum=0.85,value=0.75,step=0.05,interactive=True,label="相似度阈值")
n_nearest = gr.Slider(minimum=3,maximum=10,value=10,step=1,interactive=True,label="粗筛语句数量")
max_result_len = gr.Slider(minimum=1,maximum=5,value=3,step=1,interactive=True,label="精筛语句数量")
with gr.Row():
submit_button = gr.Button("检测")
with gr.Row():
output_text = gr.HTML(CSS_Content)
output_text.elem_id="custom_id"
submit_button.click(fn=generate_HTML, inputs=[input_text,threshold,n_nearest,max_result_len], outputs=output_text)
demo.launch()