Spaces:
Running
Running
ThorbenFroehlking
commited on
Commit
·
3a463dd
1
Parent(s):
64f6421
Update
Browse files- .gradio/certificate.pem +31 -0
- .ipynb_checkpoints/2IWI-checkpoint.pdb +0 -0
- .ipynb_checkpoints/4BDU-checkpoint.pdb +0 -0
- .ipynb_checkpoints/4BDU_A_scored-checkpoint.pdb +0 -0
- .ipynb_checkpoints/app-checkpoint.py +230 -90
- .ipynb_checkpoints/test3-checkpoint.ipynb +1599 -0
- 2IWI.cif +0 -0
- 2IWI.pdb +0 -0
- 2IWI_predictions.txt +249 -244
- 4BDU.cif +0 -0
- 4BDU.pdb +0 -0
- 4BDU_A_scored.pdb +0 -0
- 4BDU_C_scored.pdb +0 -0
- 4BDU_predictions.txt +300 -0
- app.py +230 -90
- test3.ipynb +1599 -0
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
.ipynb_checkpoints/2IWI-checkpoint.pdb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/4BDU-checkpoint.pdb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/4BDU_A_scored-checkpoint.pdb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
from Bio.PDB import PDBParser
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
import os
|
6 |
from gradio_molecule3d import Molecule3D
|
@@ -25,6 +28,8 @@ from datasets import Dataset
|
|
25 |
|
26 |
from scipy.special import expit
|
27 |
|
|
|
|
|
28 |
# Load model and move to device
|
29 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
30 |
max_length = 1500
|
@@ -37,119 +42,250 @@ def normalize_scores(scores):
|
|
37 |
min_score = np.min(scores)
|
38 |
max_score = np.max(scores)
|
39 |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
40 |
-
|
41 |
def read_mol(pdb_path):
|
42 |
"""Read PDB file and return its content as a string"""
|
43 |
with open(pdb_path, 'r') as f:
|
44 |
return f.read()
|
45 |
|
46 |
-
def
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
return
|
54 |
else:
|
55 |
return None
|
56 |
|
57 |
-
def
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if not pdb_path:
|
60 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
structure = parser.get_structure('protein', pdb_path)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
chain = structure[0][segment]
|
67 |
except KeyError:
|
68 |
return "Invalid Chain ID", None, None
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',
|
74 |
-
'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',
|
75 |
-
'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',
|
76 |
-
'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'
|
77 |
-
}
|
78 |
-
|
79 |
-
# Exclude non-amino acid residues
|
80 |
-
sequence = "".join(
|
81 |
-
aa_dict[residue.get_resname().strip()]
|
82 |
-
for residue in chain
|
83 |
-
if residue.get_resname().strip() in aa_dict
|
84 |
-
)
|
85 |
-
sequence2 = [
|
86 |
-
(res.id[1], res) for res in chain
|
87 |
-
if res.get_resname().strip() in aa_dict
|
88 |
-
]
|
89 |
|
90 |
# Prepare input for model prediction
|
91 |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
92 |
with torch.no_grad():
|
93 |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
94 |
-
|
95 |
# Calculate scores and normalize them
|
96 |
scores = expit(outputs[:, 1] - outputs[:, 0])
|
97 |
normalized_scores = normalize_scores(scores)
|
98 |
-
|
99 |
-
# Zip residues with scores to track the residue ID and score
|
100 |
-
residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
#
|
108 |
prediction_file = f"{pdb_id}_predictions.txt"
|
109 |
with open(prediction_file, "w") as f:
|
110 |
f.write(result_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
return result_str
|
|
|
113 |
|
114 |
def molecule(input_pdb, residue_scores=None, segment='A'):
|
115 |
mol = read_mol(input_pdb) # Read PDB file content
|
116 |
-
|
117 |
# Prepare high-scoring residues script if scores are provided
|
118 |
high_score_script = ""
|
119 |
if residue_scores is not None:
|
120 |
-
#
|
121 |
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
|
122 |
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
|
123 |
|
124 |
high_score_script = """
|
125 |
-
//
|
126 |
-
viewer.
|
127 |
-
|
128 |
-
|
129 |
-
viewer.getModel(0).setStyle(
|
130 |
{"chain": "%s"},
|
131 |
-
{
|
132 |
);
|
133 |
-
|
134 |
-
//
|
135 |
-
let
|
136 |
-
|
137 |
-
|
|
|
138 |
{"stick": {"color": "red"}}
|
139 |
);
|
140 |
|
141 |
-
//
|
142 |
-
let
|
143 |
-
|
144 |
-
|
|
|
145 |
{"stick": {"color": "orange"}}
|
146 |
);
|
147 |
-
""" % (
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
152 |
|
|
|
153 |
html_content = f"""
|
154 |
<!DOCTYPE html>
|
155 |
<html>
|
@@ -173,13 +309,6 @@ def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
173 |
let element = $("#container");
|
174 |
let config = {{ backgroundColor: "white" }};
|
175 |
let viewer = $3Dmol.createViewer(element, config);
|
176 |
-
viewer.addModel(pdb, "pdb");
|
177 |
-
|
178 |
-
// Reset all styles and show only selected chain
|
179 |
-
viewer.getModel(0).setStyle(
|
180 |
-
{{"chain": "{segment}"}},
|
181 |
-
{{ cartoon: {{ colorscheme:"whiteCarbon" }} }}
|
182 |
-
);
|
183 |
|
184 |
{high_score_script}
|
185 |
|
@@ -221,39 +350,50 @@ def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
221 |
# Return the HTML content within an iframe safely encoded for special characters
|
222 |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>'
|
223 |
|
224 |
-
reps = [
|
225 |
-
{
|
226 |
-
"model": 0,
|
227 |
-
"style": "cartoon",
|
228 |
-
"color": "whiteCarbon",
|
229 |
-
"residue_range": "",
|
230 |
-
"around": 0,
|
231 |
-
"byres": False,
|
232 |
-
}
|
233 |
-
]
|
234 |
|
235 |
# Gradio UI
|
236 |
with gr.Blocks() as demo:
|
237 |
gr.Markdown("# Protein Binding Site Prediction")
|
|
|
238 |
with gr.Row():
|
239 |
-
pdb_input = gr.Textbox(value="
|
240 |
visualize_btn = gr.Button("Visualize Structure")
|
241 |
|
242 |
-
molecule_output2 = Molecule3D(label="Protein Structure", reps=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
with gr.Row():
|
245 |
-
#pdb_input = gr.Textbox(value="2IWI", label="PDB ID", placeholder="Enter PDB ID here...")
|
246 |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
|
247 |
prediction_btn = gr.Button("Predict Binding Site")
|
248 |
|
|
|
249 |
molecule_output = gr.HTML(label="Protein Structure")
|
250 |
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
251 |
-
download_output = gr.File(label="Download
|
252 |
-
|
253 |
-
visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)
|
254 |
-
|
255 |
-
prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
gr.Markdown("## Examples")
|
258 |
gr.Examples(
|
259 |
examples=[
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
from Bio.PDB import PDBParser, MMCIFParser, PDBIO
|
4 |
+
from Bio.PDB.Polypeptide import is_aa
|
5 |
+
from Bio.SeqUtils import seq1
|
6 |
+
from typing import Optional, Tuple
|
7 |
import numpy as np
|
8 |
import os
|
9 |
from gradio_molecule3d import Molecule3D
|
|
|
28 |
|
29 |
from scipy.special import expit
|
30 |
|
31 |
+
|
32 |
+
|
33 |
# Load model and move to device
|
34 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
35 |
max_length = 1500
|
|
|
42 |
min_score = np.min(scores)
|
43 |
max_score = np.max(scores)
|
44 |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
45 |
+
|
46 |
def read_mol(pdb_path):
|
47 |
"""Read PDB file and return its content as a string"""
|
48 |
with open(pdb_path, 'r') as f:
|
49 |
return f.read()
|
50 |
|
51 |
+
def fetch_structure(pdb_id: str, output_dir: str = ".") -> Optional[str]:
|
52 |
+
"""
|
53 |
+
Fetch the structure file for a given PDB ID. Prioritizes CIF files.
|
54 |
+
If a structure file already exists locally, it uses that.
|
55 |
+
"""
|
56 |
+
file_path = download_structure(pdb_id, output_dir)
|
57 |
+
if file_path:
|
58 |
+
return file_path
|
59 |
else:
|
60 |
return None
|
61 |
|
62 |
+
def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:
|
63 |
+
"""
|
64 |
+
Attempt to download the structure file in CIF or PDB format.
|
65 |
+
Returns the path to the downloaded file, or None if download fails.
|
66 |
+
"""
|
67 |
+
for ext in ['.cif', '.pdb']:
|
68 |
+
file_path = os.path.join(output_dir, f"{pdb_id}{ext}")
|
69 |
+
if os.path.exists(file_path):
|
70 |
+
return file_path
|
71 |
+
url = f"https://files.rcsb.org/download/{pdb_id}{ext}"
|
72 |
+
try:
|
73 |
+
response = requests.get(url, timeout=10)
|
74 |
+
if response.status_code == 200:
|
75 |
+
with open(file_path, 'wb') as f:
|
76 |
+
f.write(response.content)
|
77 |
+
return file_path
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Download error for {pdb_id}{ext}: {e}")
|
80 |
+
return None
|
81 |
+
|
82 |
+
def convert_cif_to_pdb(cif_path: str, output_dir: str = ".") -> str:
|
83 |
+
"""
|
84 |
+
Convert a CIF file to PDB format using BioPython and return the PDB file path.
|
85 |
+
"""
|
86 |
+
pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))
|
87 |
+
parser = MMCIFParser(QUIET=True)
|
88 |
+
structure = parser.get_structure('protein', cif_path)
|
89 |
+
io = PDBIO()
|
90 |
+
io.set_structure(structure)
|
91 |
+
io.save(pdb_path)
|
92 |
+
return pdb_path
|
93 |
+
|
94 |
+
def fetch_pdb(pdb_id):
|
95 |
+
pdb_path = fetch_structure(pdb_id)
|
96 |
if not pdb_path:
|
97 |
+
return None
|
98 |
+
_, ext = os.path.splitext(pdb_path)
|
99 |
+
if ext == '.cif':
|
100 |
+
pdb_path = convert_cif_to_pdb(pdb_path)
|
101 |
+
return pdb_path
|
102 |
+
|
103 |
+
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:
|
104 |
+
"""
|
105 |
+
Create a PDB file with only the specified chain and replace B-factor with prediction scores
|
106 |
+
"""
|
107 |
+
# Read the original PDB file
|
108 |
+
parser = PDBParser(QUIET=True)
|
109 |
+
structure = parser.get_structure('protein', input_pdb)
|
110 |
|
111 |
+
# Prepare a new structure with only the specified chain
|
112 |
+
new_structure = structure.copy()
|
113 |
+
for model in new_structure:
|
114 |
+
# Remove all chains except the specified one
|
115 |
+
chains_to_remove = [chain for chain in model if chain.id != chain_id]
|
116 |
+
for chain in chains_to_remove:
|
117 |
+
model.detach_child(chain.id)
|
118 |
+
|
119 |
+
# Create a modified PDB with scores in B-factor
|
120 |
+
scores_dict = {resi: score for resi, score in residue_scores}
|
121 |
+
for model in new_structure:
|
122 |
+
for chain in model:
|
123 |
+
for residue in chain:
|
124 |
+
if residue.id[1] in scores_dict:
|
125 |
+
for atom in residue:
|
126 |
+
atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range
|
127 |
+
|
128 |
+
# Save the modified structure
|
129 |
+
output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb"
|
130 |
+
io = PDBIO()
|
131 |
+
io.set_structure(new_structure)
|
132 |
+
io.save(output_pdb)
|
133 |
+
|
134 |
+
return output_pdb
|
135 |
+
|
136 |
+
def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):
|
137 |
+
"""
|
138 |
+
Calculate the geometric center of high-scoring residues
|
139 |
+
"""
|
140 |
+
parser = PDBParser(QUIET=True)
|
141 |
structure = parser.get_structure('protein', pdb_path)
|
142 |
|
143 |
+
# Collect coordinates of CA atoms from high-scoring residues
|
144 |
+
coords = []
|
145 |
+
for model in structure:
|
146 |
+
for chain in model:
|
147 |
+
if chain.id == chain_id:
|
148 |
+
for residue in chain:
|
149 |
+
if residue.id[1] in high_score_residues:
|
150 |
+
if 'CA' in residue: # Use alpha carbon as representative
|
151 |
+
ca_atom = residue['CA']
|
152 |
+
coords.append(ca_atom.coord)
|
153 |
+
|
154 |
+
# Calculate geometric center
|
155 |
+
if coords:
|
156 |
+
center = np.mean(coords, axis=0)
|
157 |
+
return center
|
158 |
+
return None
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
def process_pdb(pdb_id_or_file, segment):
|
163 |
+
# Determine if input is a PDB ID or file path
|
164 |
+
if pdb_id_or_file.endswith('.pdb'):
|
165 |
+
pdb_path = pdb_id_or_file
|
166 |
+
pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]
|
167 |
+
else:
|
168 |
+
pdb_id = pdb_id_or_file
|
169 |
+
pdb_path = fetch_pdb(pdb_id)
|
170 |
+
|
171 |
+
if not pdb_path:
|
172 |
+
return "Failed to fetch PDB file", None, None
|
173 |
+
|
174 |
+
# Determine the file format and choose the appropriate parser
|
175 |
+
_, ext = os.path.splitext(pdb_path)
|
176 |
+
parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)
|
177 |
+
|
178 |
+
try:
|
179 |
+
# Parse the structure file
|
180 |
+
structure = parser.get_structure('protein', pdb_path)
|
181 |
+
except Exception as e:
|
182 |
+
return f"Error parsing structure file: {e}", None, None
|
183 |
+
|
184 |
+
# Extract the specified chain
|
185 |
try:
|
186 |
chain = structure[0][segment]
|
187 |
except KeyError:
|
188 |
return "Invalid Chain ID", None, None
|
189 |
|
190 |
+
protein_residues = [res for res in chain if is_aa(res)]
|
191 |
+
sequence = "".join(seq1(res.resname) for res in protein_residues)
|
192 |
+
sequence_id = [res.id[1] for res in protein_residues]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
# Prepare input for model prediction
|
195 |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
196 |
with torch.no_grad():
|
197 |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
198 |
+
|
199 |
# Calculate scores and normalize them
|
200 |
scores = expit(outputs[:, 1] - outputs[:, 0])
|
201 |
normalized_scores = normalize_scores(scores)
|
|
|
|
|
|
|
202 |
|
203 |
+
# Zip residues with scores to track the residue ID and score
|
204 |
+
residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
|
205 |
+
|
206 |
+
# Identify high and mid scoring residues
|
207 |
+
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
|
208 |
+
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
|
209 |
+
|
210 |
+
# Calculate geometric center of high-scoring residues
|
211 |
+
geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)
|
212 |
+
pymol_selection = f"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}"
|
213 |
+
pymol_center_cmd = f"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}" if geo_center is not None else ""
|
214 |
+
|
215 |
+
# Generate the result string
|
216 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
217 |
+
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
|
218 |
+
result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n\n"
|
219 |
+
result_str += "\n".join([
|
220 |
+
f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
221 |
+
for i, res in enumerate(protein_residues)])
|
222 |
|
223 |
+
# Create prediction and scored PDB files
|
224 |
prediction_file = f"{pdb_id}_predictions.txt"
|
225 |
with open(prediction_file, "w") as f:
|
226 |
f.write(result_str)
|
227 |
+
|
228 |
+
# Create chain-specific PDB with scores in B-factor
|
229 |
+
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)
|
230 |
+
|
231 |
+
# Molecule visualization with updated script
|
232 |
+
mol_vis = molecule(pdb_path, residue_scores, segment)
|
233 |
+
|
234 |
+
# Construct PyMOL command suggestions
|
235 |
+
pymol_commands = f"""
|
236 |
+
PyMOL Visualization Commands:
|
237 |
+
1. Load PDB: load {os.path.abspath(pdb_path)}
|
238 |
+
2. Select high-scoring residues: {pymol_selection}
|
239 |
+
3. Highlight high-scoring residues: show sticks, high_score_residues
|
240 |
+
{pymol_center_cmd}
|
241 |
+
"""
|
242 |
|
243 |
+
return result_str + "\n\n" + pymol_commands, mol_vis, [prediction_file, scored_pdb]
|
244 |
+
|
245 |
|
246 |
def molecule(input_pdb, residue_scores=None, segment='A'):
|
247 |
mol = read_mol(input_pdb) # Read PDB file content
|
248 |
+
|
249 |
# Prepare high-scoring residues script if scores are provided
|
250 |
high_score_script = ""
|
251 |
if residue_scores is not None:
|
252 |
+
# Filter residues based on their scores
|
253 |
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
|
254 |
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
|
255 |
|
256 |
high_score_script = """
|
257 |
+
// Load the original model and apply white cartoon style
|
258 |
+
let chainModel = viewer.addModel(pdb, "pdb");
|
259 |
+
chainModel.setStyle({}, {});
|
260 |
+
chainModel.setStyle(
|
|
|
261 |
{"chain": "%s"},
|
262 |
+
{"cartoon": {"color": "white"}}
|
263 |
);
|
264 |
+
|
265 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
266 |
+
let highScoreModel = viewer.addModel(pdb, "pdb");
|
267 |
+
highScoreModel.setStyle({}, {});
|
268 |
+
highScoreModel.setStyle(
|
269 |
+
{"chain": "%s", "resi": [%s]},
|
270 |
{"stick": {"color": "red"}}
|
271 |
);
|
272 |
|
273 |
+
// Create a new model for medium-scoring residues and apply orange sticks style
|
274 |
+
let midScoreModel = viewer.addModel(pdb, "pdb");
|
275 |
+
midScoreModel.setStyle({}, {});
|
276 |
+
midScoreModel.setStyle(
|
277 |
+
{"chain": "%s", "resi": [%s]},
|
278 |
{"stick": {"color": "orange"}}
|
279 |
);
|
280 |
+
""" % (
|
281 |
+
segment,
|
282 |
+
segment,
|
283 |
+
", ".join(str(resi) for resi in high_score_residues),
|
284 |
+
segment,
|
285 |
+
", ".join(str(resi) for resi in mid_score_residues)
|
286 |
+
)
|
287 |
|
288 |
+
# Generate the full HTML content
|
289 |
html_content = f"""
|
290 |
<!DOCTYPE html>
|
291 |
<html>
|
|
|
309 |
let element = $("#container");
|
310 |
let config = {{ backgroundColor: "white" }};
|
311 |
let viewer = $3Dmol.createViewer(element, config);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
{high_score_script}
|
314 |
|
|
|
350 |
# Return the HTML content within an iframe safely encoded for special characters
|
351 |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>'
|
352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
# Gradio UI
|
355 |
with gr.Blocks() as demo:
|
356 |
gr.Markdown("# Protein Binding Site Prediction")
|
357 |
+
|
358 |
with gr.Row():
|
359 |
+
pdb_input = gr.Textbox(value="4BDU", label="PDB ID", placeholder="Enter PDB ID here...")
|
360 |
visualize_btn = gr.Button("Visualize Structure")
|
361 |
|
362 |
+
molecule_output2 = Molecule3D(label="Protein Structure", reps=[
|
363 |
+
{
|
364 |
+
"model": 0,
|
365 |
+
"style": "cartoon",
|
366 |
+
"color": "whiteCarbon",
|
367 |
+
"residue_range": "",
|
368 |
+
"around": 0,
|
369 |
+
"byres": False,
|
370 |
+
}
|
371 |
+
])
|
372 |
|
373 |
with gr.Row():
|
|
|
374 |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
|
375 |
prediction_btn = gr.Button("Predict Binding Site")
|
376 |
|
377 |
+
|
378 |
molecule_output = gr.HTML(label="Protein Structure")
|
379 |
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
380 |
+
download_output = gr.File(label="Download Files", file_count="multiple")
|
|
|
|
|
|
|
|
|
381 |
|
382 |
+
prediction_btn.click(
|
383 |
+
process_pdb,
|
384 |
+
inputs=[
|
385 |
+
pdb_input,
|
386 |
+
segment_input
|
387 |
+
],
|
388 |
+
outputs=[predictions_output, molecule_output, download_output]
|
389 |
+
)
|
390 |
+
|
391 |
+
visualize_btn.click(
|
392 |
+
fetch_pdb,
|
393 |
+
inputs=[pdb_input],
|
394 |
+
outputs=molecule_output2
|
395 |
+
)
|
396 |
+
|
397 |
gr.Markdown("## Examples")
|
398 |
gr.Examples(
|
399 |
examples=[
|
.ipynb_checkpoints/test3-checkpoint.ipynb
ADDED
@@ -0,0 +1,1599 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 18,
|
6 |
+
"id": "2b84eb4e-3f91-4a28-8e4f-322a34a9fb55",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"* Running on local URL: http://127.0.0.1:7877\n",
|
14 |
+
"* Running on public URL: https://a35567ec94eccaf8d1.gradio.live\n",
|
15 |
+
"\n",
|
16 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"data": {
|
21 |
+
"text/html": [
|
22 |
+
"<div><iframe src=\"https://a35567ec94eccaf8d1.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
23 |
+
],
|
24 |
+
"text/plain": [
|
25 |
+
"<IPython.core.display.HTML object>"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
"metadata": {},
|
29 |
+
"output_type": "display_data"
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"data": {
|
33 |
+
"text/plain": []
|
34 |
+
},
|
35 |
+
"execution_count": 18,
|
36 |
+
"metadata": {},
|
37 |
+
"output_type": "execute_result"
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"source": [
|
41 |
+
"from Bio.PDB import PDBParser, MMCIFParser, MMCIF2Dict, PDBIO\n",
|
42 |
+
"from Bio.PDB.Polypeptide import is_aa\n",
|
43 |
+
"from Bio.SeqUtils import seq1\n",
|
44 |
+
"import gradio as gr\n",
|
45 |
+
"import numpy as np\n",
|
46 |
+
"import os\n",
|
47 |
+
"import requests\n",
|
48 |
+
"from gradio_molecule3d import Molecule3D\n",
|
49 |
+
"from scipy.special import expit\n",
|
50 |
+
"from typing import Optional\n",
|
51 |
+
"\n",
|
52 |
+
"def normalize_scores(scores):\n",
|
53 |
+
" min_score = np.min(scores)\n",
|
54 |
+
" max_score = np.max(scores)\n",
|
55 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
56 |
+
"\n",
|
57 |
+
"def read_mol(pdb_path):\n",
|
58 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
59 |
+
" with open(pdb_path, 'r') as f:\n",
|
60 |
+
" return f.read()\n",
|
61 |
+
"\n",
|
62 |
+
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
|
63 |
+
" \"\"\"\n",
|
64 |
+
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
|
65 |
+
" If a structure file already exists locally, it uses that.\n",
|
66 |
+
" \"\"\"\n",
|
67 |
+
" file_path = download_structure(pdb_id, output_dir)\n",
|
68 |
+
" if file_path:\n",
|
69 |
+
" return file_path\n",
|
70 |
+
" else:\n",
|
71 |
+
" return None\n",
|
72 |
+
"\n",
|
73 |
+
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
|
74 |
+
" \"\"\"\n",
|
75 |
+
" Attempt to download the structure file in CIF or PDB format.\n",
|
76 |
+
" Returns the path to the downloaded file, or None if download fails.\n",
|
77 |
+
" \"\"\"\n",
|
78 |
+
" for ext in ['.cif', '.pdb']:\n",
|
79 |
+
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
|
80 |
+
" if os.path.exists(file_path):\n",
|
81 |
+
" return file_path\n",
|
82 |
+
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
|
83 |
+
" try:\n",
|
84 |
+
" response = requests.get(url, timeout=10)\n",
|
85 |
+
" if response.status_code == 200:\n",
|
86 |
+
" with open(file_path, 'wb') as f:\n",
|
87 |
+
" f.write(response.content)\n",
|
88 |
+
" return file_path\n",
|
89 |
+
" except Exception as e:\n",
|
90 |
+
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
|
91 |
+
" return None\n",
|
92 |
+
"\n",
|
93 |
+
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
|
94 |
+
" \"\"\"\n",
|
95 |
+
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
|
96 |
+
" \"\"\"\n",
|
97 |
+
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
|
98 |
+
" parser = MMCIFParser(QUIET=True)\n",
|
99 |
+
" structure = parser.get_structure('protein', cif_path)\n",
|
100 |
+
" io = PDBIO()\n",
|
101 |
+
" io.set_structure(structure)\n",
|
102 |
+
" io.save(pdb_path)\n",
|
103 |
+
" return pdb_path\n",
|
104 |
+
"\n",
|
105 |
+
"def fetch_pdb(pdb_id):\n",
|
106 |
+
" pdb_path = fetch_structure(pdb_id)\n",
|
107 |
+
" if not pdb_path:\n",
|
108 |
+
" return None\n",
|
109 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
110 |
+
" if ext == '.cif':\n",
|
111 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
112 |
+
" return pdb_path\n",
|
113 |
+
"\n",
|
114 |
+
"def process_pdb(pdb_id, segment):\n",
|
115 |
+
" # Fetch the PDB or CIF file\n",
|
116 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
117 |
+
" if not pdb_path:\n",
|
118 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
119 |
+
" \n",
|
120 |
+
" # Determine the file format and choose the appropriate parser\n",
|
121 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
122 |
+
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
|
123 |
+
" \n",
|
124 |
+
" try:\n",
|
125 |
+
" # Parse the structure file\n",
|
126 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
127 |
+
" except Exception as e:\n",
|
128 |
+
" return f\"Error parsing structure file: {e}\", None, None\n",
|
129 |
+
" \n",
|
130 |
+
" # Extract the specified chain\n",
|
131 |
+
" try:\n",
|
132 |
+
" chain = structure[0][segment]\n",
|
133 |
+
" except KeyError:\n",
|
134 |
+
" return \"Invalid Chain ID\", None, None\n",
|
135 |
+
" \n",
|
136 |
+
" protein_residues = [res for res in chain if is_aa(res)]\n",
|
137 |
+
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
|
138 |
+
" sequence_id = [res.id[1] for res in protein_residues]\n",
|
139 |
+
" \n",
|
140 |
+
" # Generate random scores for residues\n",
|
141 |
+
" scores = np.random.rand(len(sequence))\n",
|
142 |
+
" normalized_scores = normalize_scores(scores)\n",
|
143 |
+
" \n",
|
144 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
145 |
+
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
|
146 |
+
"\n",
|
147 |
+
" # Generate the result string\n",
|
148 |
+
" result_str = \"\\n\".join([\n",
|
149 |
+
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
150 |
+
" for i, res in enumerate(protein_residues)])\n",
|
151 |
+
" \n",
|
152 |
+
" # Save the predictions to a file\n",
|
153 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
154 |
+
" with open(prediction_file, \"w\") as f:\n",
|
155 |
+
" f.write(result_str)\n",
|
156 |
+
"\n",
|
157 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
158 |
+
" if ext == '.cif':\n",
|
159 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
160 |
+
"\n",
|
161 |
+
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
162 |
+
"\n",
|
163 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
164 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
165 |
+
" \n",
|
166 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
167 |
+
" high_score_script = \"\"\n",
|
168 |
+
" if residue_scores is not None:\n",
|
169 |
+
" # Sort residues based on their scores\n",
|
170 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
171 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
172 |
+
" \n",
|
173 |
+
" high_score_script = \"\"\"\n",
|
174 |
+
" // Reset all styles first\n",
|
175 |
+
" viewer.getModel(0).setStyle({}, {});\n",
|
176 |
+
" \n",
|
177 |
+
" // Show only the selected chain\n",
|
178 |
+
" viewer.getModel(0).setStyle(\n",
|
179 |
+
" {\"chain\": \"%s\"}, \n",
|
180 |
+
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
181 |
+
" );\n",
|
182 |
+
" \n",
|
183 |
+
" // Highlight high-scoring residues only for the selected chain\n",
|
184 |
+
" let highScoreResidues = [%s];\n",
|
185 |
+
" viewer.getModel(0).setStyle(\n",
|
186 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
187 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
188 |
+
" );\n",
|
189 |
+
"\n",
|
190 |
+
" // Highlight medium-scoring residues only for the selected chain\n",
|
191 |
+
" let midScoreResidues = [%s];\n",
|
192 |
+
" viewer.getModel(0).setStyle(\n",
|
193 |
+
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
194 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
195 |
+
" );\n",
|
196 |
+
" \"\"\" % (segment, \n",
|
197 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
198 |
+
" segment,\n",
|
199 |
+
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
200 |
+
" segment)\n",
|
201 |
+
" \n",
|
202 |
+
" html_content = f\"\"\"\n",
|
203 |
+
" <!DOCTYPE html>\n",
|
204 |
+
" <html>\n",
|
205 |
+
" <head> \n",
|
206 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
207 |
+
" <style>\n",
|
208 |
+
" .mol-container {{\n",
|
209 |
+
" width: 100%;\n",
|
210 |
+
" height: 700px;\n",
|
211 |
+
" position: relative;\n",
|
212 |
+
" }}\n",
|
213 |
+
" </style>\n",
|
214 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
215 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
216 |
+
" </head>\n",
|
217 |
+
" <body>\n",
|
218 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
219 |
+
" <script>\n",
|
220 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
221 |
+
" $(document).ready(function () {{\n",
|
222 |
+
" let element = $(\"#container\");\n",
|
223 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
224 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
225 |
+
" viewer.addModel(pdb, \"pdb\");\n",
|
226 |
+
" \n",
|
227 |
+
" // Reset all styles and show only selected chain\n",
|
228 |
+
" viewer.getModel(0).setStyle(\n",
|
229 |
+
" {{\"chain\": \"{segment}\"}}, \n",
|
230 |
+
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
231 |
+
" );\n",
|
232 |
+
" \n",
|
233 |
+
" {high_score_script}\n",
|
234 |
+
" \n",
|
235 |
+
" // Add hover functionality\n",
|
236 |
+
" viewer.setHoverable(\n",
|
237 |
+
" {{}}, \n",
|
238 |
+
" true, \n",
|
239 |
+
" function(atom, viewer, event, container) {{\n",
|
240 |
+
" if (!atom.label) {{\n",
|
241 |
+
" atom.label = viewer.addLabel(\n",
|
242 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
243 |
+
" {{\n",
|
244 |
+
" position: atom, \n",
|
245 |
+
" backgroundColor: 'mintcream', \n",
|
246 |
+
" fontColor: 'black',\n",
|
247 |
+
" fontSize: 12,\n",
|
248 |
+
" padding: 2\n",
|
249 |
+
" }}\n",
|
250 |
+
" );\n",
|
251 |
+
" }}\n",
|
252 |
+
" }},\n",
|
253 |
+
" function(atom, viewer) {{\n",
|
254 |
+
" if (atom.label) {{\n",
|
255 |
+
" viewer.removeLabel(atom.label);\n",
|
256 |
+
" delete atom.label;\n",
|
257 |
+
" }}\n",
|
258 |
+
" }}\n",
|
259 |
+
" );\n",
|
260 |
+
" \n",
|
261 |
+
" viewer.zoomTo();\n",
|
262 |
+
" viewer.render();\n",
|
263 |
+
" viewer.zoom(0.8, 2000);\n",
|
264 |
+
" }});\n",
|
265 |
+
" </script>\n",
|
266 |
+
" </body>\n",
|
267 |
+
" </html>\n",
|
268 |
+
" \"\"\"\n",
|
269 |
+
" \n",
|
270 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
271 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
272 |
+
"\n",
|
273 |
+
"reps = [\n",
|
274 |
+
" {\n",
|
275 |
+
" \"model\": 0,\n",
|
276 |
+
" \"style\": \"cartoon\",\n",
|
277 |
+
" \"color\": \"whiteCarbon\",\n",
|
278 |
+
" \"residue_range\": \"\",\n",
|
279 |
+
" \"around\": 0,\n",
|
280 |
+
" \"byres\": False,\n",
|
281 |
+
" }\n",
|
282 |
+
"]\n",
|
283 |
+
"\n",
|
284 |
+
"# Gradio UI\n",
|
285 |
+
"with gr.Blocks() as demo:\n",
|
286 |
+
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
287 |
+
" with gr.Row():\n",
|
288 |
+
" pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
289 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
290 |
+
"\n",
|
291 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
292 |
+
"\n",
|
293 |
+
" with gr.Row():\n",
|
294 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
295 |
+
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
296 |
+
"\n",
|
297 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
298 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
299 |
+
" download_output = gr.File(label=\"Download Predictions\")\n",
|
300 |
+
" \n",
|
301 |
+
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
302 |
+
" \n",
|
303 |
+
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
304 |
+
" \n",
|
305 |
+
" gr.Markdown(\"## Examples\")\n",
|
306 |
+
" gr.Examples(\n",
|
307 |
+
" examples=[\n",
|
308 |
+
" [\"7RPZ\", \"A\"],\n",
|
309 |
+
" [\"2IWI\", \"B\"],\n",
|
310 |
+
" [\"2F6V\", \"A\"]\n",
|
311 |
+
" ],\n",
|
312 |
+
" inputs=[pdb_input, segment_input],\n",
|
313 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
314 |
+
" )\n",
|
315 |
+
"\n",
|
316 |
+
"demo.launch(share=True)"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": 20,
|
322 |
+
"id": "a2f1ca04-7a27-4e4f-b44d-39b20c5d034a",
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [
|
325 |
+
{
|
326 |
+
"name": "stdout",
|
327 |
+
"output_type": "stream",
|
328 |
+
"text": [
|
329 |
+
"* Running on local URL: http://127.0.0.1:7878\n",
|
330 |
+
"* Running on public URL: https://fbfb00e893a2d7c6ae.gradio.live\n",
|
331 |
+
"\n",
|
332 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"data": {
|
337 |
+
"text/html": [
|
338 |
+
"<div><iframe src=\"https://fbfb00e893a2d7c6ae.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
339 |
+
],
|
340 |
+
"text/plain": [
|
341 |
+
"<IPython.core.display.HTML object>"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
"metadata": {},
|
345 |
+
"output_type": "display_data"
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"data": {
|
349 |
+
"text/plain": []
|
350 |
+
},
|
351 |
+
"execution_count": 20,
|
352 |
+
"metadata": {},
|
353 |
+
"output_type": "execute_result"
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"source": [
|
357 |
+
"import os\n",
|
358 |
+
"from datetime import datetime\n",
|
359 |
+
"import gradio as gr\n",
|
360 |
+
"import numpy as np\n",
|
361 |
+
"import requests\n",
|
362 |
+
"from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
|
363 |
+
"from Bio.PDB.Polypeptide import is_aa\n",
|
364 |
+
"from Bio.SeqUtils import seq1\n",
|
365 |
+
"from gradio_molecule3d import Molecule3D\n",
|
366 |
+
"from typing import Optional, Tuple\n",
|
367 |
+
"\n",
|
368 |
+
"def normalize_scores(scores):\n",
|
369 |
+
" min_score = np.min(scores)\n",
|
370 |
+
" max_score = np.max(scores)\n",
|
371 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
372 |
+
"\n",
|
373 |
+
"def read_mol(pdb_path):\n",
|
374 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
375 |
+
" with open(pdb_path, 'r') as f:\n",
|
376 |
+
" return f.read()\n",
|
377 |
+
"\n",
|
378 |
+
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
|
379 |
+
" \"\"\"\n",
|
380 |
+
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
|
381 |
+
" If a structure file already exists locally, it uses that.\n",
|
382 |
+
" \"\"\"\n",
|
383 |
+
" file_path = download_structure(pdb_id, output_dir)\n",
|
384 |
+
" if file_path:\n",
|
385 |
+
" return file_path\n",
|
386 |
+
" else:\n",
|
387 |
+
" return None\n",
|
388 |
+
"\n",
|
389 |
+
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
|
390 |
+
" \"\"\"\n",
|
391 |
+
" Attempt to download the structure file in CIF or PDB format.\n",
|
392 |
+
" Returns the path to the downloaded file, or None if download fails.\n",
|
393 |
+
" \"\"\"\n",
|
394 |
+
" for ext in ['.cif', '.pdb']:\n",
|
395 |
+
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
|
396 |
+
" if os.path.exists(file_path):\n",
|
397 |
+
" return file_path\n",
|
398 |
+
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
|
399 |
+
" try:\n",
|
400 |
+
" response = requests.get(url, timeout=10)\n",
|
401 |
+
" if response.status_code == 200:\n",
|
402 |
+
" with open(file_path, 'wb') as f:\n",
|
403 |
+
" f.write(response.content)\n",
|
404 |
+
" return file_path\n",
|
405 |
+
" except Exception as e:\n",
|
406 |
+
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
|
407 |
+
" return None\n",
|
408 |
+
"\n",
|
409 |
+
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
|
410 |
+
" \"\"\"\n",
|
411 |
+
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
|
412 |
+
" \"\"\"\n",
|
413 |
+
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
|
414 |
+
" parser = MMCIFParser(QUIET=True)\n",
|
415 |
+
" structure = parser.get_structure('protein', cif_path)\n",
|
416 |
+
" io = PDBIO()\n",
|
417 |
+
" io.set_structure(structure)\n",
|
418 |
+
" io.save(pdb_path)\n",
|
419 |
+
" return pdb_path\n",
|
420 |
+
"\n",
|
421 |
+
"def fetch_pdb(pdb_id):\n",
|
422 |
+
" pdb_path = fetch_structure(pdb_id)\n",
|
423 |
+
" if not pdb_path:\n",
|
424 |
+
" return None\n",
|
425 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
426 |
+
" if ext == '.cif':\n",
|
427 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
428 |
+
" return pdb_path\n",
|
429 |
+
"\n",
|
430 |
+
"def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:\n",
|
431 |
+
" \"\"\"\n",
|
432 |
+
" Create a PDB file with only the specified chain and replace B-factor with prediction scores\n",
|
433 |
+
" \"\"\"\n",
|
434 |
+
" # Read the original PDB file\n",
|
435 |
+
" parser = PDBParser(QUIET=True)\n",
|
436 |
+
" structure = parser.get_structure('protein', input_pdb)\n",
|
437 |
+
" \n",
|
438 |
+
" # Prepare a new structure with only the specified chain\n",
|
439 |
+
" new_structure = structure.copy()\n",
|
440 |
+
" for model in new_structure:\n",
|
441 |
+
" # Remove all chains except the specified one\n",
|
442 |
+
" chains_to_remove = [chain for chain in model if chain.id != chain_id]\n",
|
443 |
+
" for chain in chains_to_remove:\n",
|
444 |
+
" model.detach_child(chain.id)\n",
|
445 |
+
" \n",
|
446 |
+
" # Create a modified PDB with scores in B-factor\n",
|
447 |
+
" scores_dict = {resi: score for resi, score in residue_scores}\n",
|
448 |
+
" for model in new_structure:\n",
|
449 |
+
" for chain in model:\n",
|
450 |
+
" for residue in chain:\n",
|
451 |
+
" if residue.id[1] in scores_dict:\n",
|
452 |
+
" for atom in residue:\n",
|
453 |
+
" atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range\n",
|
454 |
+
" \n",
|
455 |
+
" # Save the modified structure\n",
|
456 |
+
" output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
|
457 |
+
" io = PDBIO()\n",
|
458 |
+
" io.set_structure(new_structure)\n",
|
459 |
+
" io.save(output_pdb)\n",
|
460 |
+
" \n",
|
461 |
+
" return output_pdb\n",
|
462 |
+
"\n",
|
463 |
+
"def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
|
464 |
+
" \"\"\"\n",
|
465 |
+
" Calculate the geometric center of high-scoring residues\n",
|
466 |
+
" \"\"\"\n",
|
467 |
+
" parser = PDBParser(QUIET=True)\n",
|
468 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
469 |
+
" \n",
|
470 |
+
" # Collect coordinates of CA atoms from high-scoring residues\n",
|
471 |
+
" coords = []\n",
|
472 |
+
" for model in structure:\n",
|
473 |
+
" for chain in model:\n",
|
474 |
+
" if chain.id == chain_id:\n",
|
475 |
+
" for residue in chain:\n",
|
476 |
+
" if residue.id[1] in high_score_residues:\n",
|
477 |
+
" if 'CA' in residue: # Use alpha carbon as representative\n",
|
478 |
+
" ca_atom = residue['CA']\n",
|
479 |
+
" coords.append(ca_atom.coord)\n",
|
480 |
+
" \n",
|
481 |
+
" # Calculate geometric center\n",
|
482 |
+
" if coords:\n",
|
483 |
+
" center = np.mean(coords, axis=0)\n",
|
484 |
+
" return center\n",
|
485 |
+
" return None\n",
|
486 |
+
"\n",
|
487 |
+
"def process_pdb(pdb_id_or_file, segment):\n",
|
488 |
+
" # Determine if input is a PDB ID or file path\n",
|
489 |
+
" if pdb_id_or_file.endswith('.pdb'):\n",
|
490 |
+
" pdb_path = pdb_id_or_file\n",
|
491 |
+
" pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
|
492 |
+
" else:\n",
|
493 |
+
" pdb_id = pdb_id_or_file\n",
|
494 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
495 |
+
" \n",
|
496 |
+
" if not pdb_path:\n",
|
497 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
498 |
+
" \n",
|
499 |
+
" # Determine the file format and choose the appropriate parser\n",
|
500 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
501 |
+
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
|
502 |
+
" \n",
|
503 |
+
" try:\n",
|
504 |
+
" # Parse the structure file\n",
|
505 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
506 |
+
" except Exception as e:\n",
|
507 |
+
" return f\"Error parsing structure file: {e}\", None, None\n",
|
508 |
+
" \n",
|
509 |
+
" # Extract the specified chain\n",
|
510 |
+
" try:\n",
|
511 |
+
" chain = structure[0][segment]\n",
|
512 |
+
" except KeyError:\n",
|
513 |
+
" return \"Invalid Chain ID\", None, None\n",
|
514 |
+
" \n",
|
515 |
+
" protein_residues = [res for res in chain if is_aa(res)]\n",
|
516 |
+
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
|
517 |
+
" sequence_id = [res.id[1] for res in protein_residues]\n",
|
518 |
+
" \n",
|
519 |
+
" # Generate random scores for residues\n",
|
520 |
+
" scores = np.random.rand(len(sequence))\n",
|
521 |
+
" normalized_scores = normalize_scores(scores)\n",
|
522 |
+
" \n",
|
523 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
524 |
+
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
|
525 |
+
"\n",
|
526 |
+
" # Identify high and mid scoring residues\n",
|
527 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
528 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
529 |
+
"\n",
|
530 |
+
" # Calculate geometric center of high-scoring residues\n",
|
531 |
+
" geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
|
532 |
+
" pymol_selection = f\"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\"\n",
|
533 |
+
" pymol_center_cmd = f\"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\" if geo_center is not None else \"\"\n",
|
534 |
+
"\n",
|
535 |
+
" # Generate the result string\n",
|
536 |
+
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
537 |
+
" result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
|
538 |
+
" result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
|
539 |
+
" result_str += \"\\n\".join([\n",
|
540 |
+
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
541 |
+
" for i, res in enumerate(protein_residues)])\n",
|
542 |
+
" \n",
|
543 |
+
" # Create prediction and scored PDB files\n",
|
544 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
545 |
+
" with open(prediction_file, \"w\") as f:\n",
|
546 |
+
" f.write(result_str)\n",
|
547 |
+
"\n",
|
548 |
+
" # Create chain-specific PDB with scores in B-factor\n",
|
549 |
+
" scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)\n",
|
550 |
+
"\n",
|
551 |
+
" # Molecule visualization with updated script\n",
|
552 |
+
" mol_vis = molecule(pdb_path, residue_scores, segment)\n",
|
553 |
+
"\n",
|
554 |
+
" # Construct PyMOL command suggestions\n",
|
555 |
+
" pymol_commands = f\"\"\"\n",
|
556 |
+
"PyMOL Visualization Commands:\n",
|
557 |
+
"1. Load PDB: load {os.path.abspath(pdb_path)}\n",
|
558 |
+
"2. Select high-scoring residues: {pymol_selection}\n",
|
559 |
+
"3. Highlight high-scoring residues: show sticks, high_score_residues\n",
|
560 |
+
"{pymol_center_cmd}\n",
|
561 |
+
"\"\"\"\n",
|
562 |
+
" \n",
|
563 |
+
" return result_str + \"\\n\\n\" + pymol_commands, mol_vis, [prediction_file, scored_pdb]\n",
|
564 |
+
"\n",
|
565 |
+
"# molecule() function remains the same as in the previous script, \n",
|
566 |
+
"# but modify the visualization script to ensure cartoon is below stick representations\n",
|
567 |
+
"\n",
|
568 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
569 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
570 |
+
" \n",
|
571 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
572 |
+
" high_score_script = \"\"\n",
|
573 |
+
" if residue_scores is not None:\n",
|
574 |
+
" # Sort residues based on their scores\n",
|
575 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
576 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
577 |
+
" \n",
|
578 |
+
" high_score_script = \"\"\"\n",
|
579 |
+
" // Reset all styles first\n",
|
580 |
+
" viewer.getModel(0).setStyle({}, {});\n",
|
581 |
+
" \n",
|
582 |
+
" // First, set background cartoon style for the entire chain (underneath)\n",
|
583 |
+
" viewer.getModel(0).setStyle(\n",
|
584 |
+
" {\"chain\": \"%s\"}, \n",
|
585 |
+
" { cartoon: {colorscheme:\"whiteCarbon\", opacity:0.7} }\n",
|
586 |
+
" );\n",
|
587 |
+
" \n",
|
588 |
+
" // Highlight high-scoring residues with sticks on top\n",
|
589 |
+
" let highScoreResidues = [%s];\n",
|
590 |
+
" viewer.getModel(0).setStyle(\n",
|
591 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
592 |
+
" {\"stick\": {\"color\": \"red\", \"opacity\": 1}}\n",
|
593 |
+
" );\n",
|
594 |
+
"\n",
|
595 |
+
" // Highlight medium-scoring residues\n",
|
596 |
+
" let midScoreResidues = [%s];\n",
|
597 |
+
" viewer.getModel(0).setStyle(\n",
|
598 |
+
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
599 |
+
" {\"stick\": {\"color\": \"orange\", \"opacity\": 0.8}}\n",
|
600 |
+
" );\n",
|
601 |
+
" \"\"\" % (segment, \n",
|
602 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
603 |
+
" segment,\n",
|
604 |
+
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
605 |
+
" segment)\n",
|
606 |
+
" \n",
|
607 |
+
" # Rest of the molecule() function remains the same as in the previous script\n",
|
608 |
+
" \n",
|
609 |
+
" html_content = f\"\"\"\n",
|
610 |
+
" <!DOCTYPE html>\n",
|
611 |
+
" <html>\n",
|
612 |
+
" <head> \n",
|
613 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
614 |
+
" <style>\n",
|
615 |
+
" .mol-container {{\n",
|
616 |
+
" width: 100%;\n",
|
617 |
+
" height: 700px;\n",
|
618 |
+
" position: relative;\n",
|
619 |
+
" }}\n",
|
620 |
+
" </style>\n",
|
621 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
622 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
623 |
+
" </head>\n",
|
624 |
+
" <body>\n",
|
625 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
626 |
+
" <script>\n",
|
627 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
628 |
+
" $(document).ready(function () {{\n",
|
629 |
+
" let element = $(\"#container\");\n",
|
630 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
631 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
632 |
+
" viewer.addModel(pdb, \"pdb\");\n",
|
633 |
+
" \n",
|
634 |
+
" {high_score_script}\n",
|
635 |
+
" \n",
|
636 |
+
" // Add hover functionality (unchanged from before)\n",
|
637 |
+
" viewer.setHoverable(\n",
|
638 |
+
" {{}}, \n",
|
639 |
+
" true, \n",
|
640 |
+
" function(atom, viewer, event, container) {{\n",
|
641 |
+
" if (!atom.label) {{\n",
|
642 |
+
" atom.label = viewer.addLabel(\n",
|
643 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
644 |
+
" {{\n",
|
645 |
+
" position: atom, \n",
|
646 |
+
" backgroundColor: 'mintcream', \n",
|
647 |
+
" fontColor: 'black',\n",
|
648 |
+
" fontSize: 12,\n",
|
649 |
+
" padding: 2\n",
|
650 |
+
" }}\n",
|
651 |
+
" );\n",
|
652 |
+
" }}\n",
|
653 |
+
" }},\n",
|
654 |
+
" function(atom, viewer) {{\n",
|
655 |
+
" if (atom.label) {{\n",
|
656 |
+
" viewer.removeLabel(atom.label);\n",
|
657 |
+
" delete atom.label;\n",
|
658 |
+
" }}\n",
|
659 |
+
" }}\n",
|
660 |
+
" );\n",
|
661 |
+
" \n",
|
662 |
+
" viewer.zoomTo();\n",
|
663 |
+
" viewer.render();\n",
|
664 |
+
" viewer.zoom(0.8, 2000);\n",
|
665 |
+
" }});\n",
|
666 |
+
" </script>\n",
|
667 |
+
" </body>\n",
|
668 |
+
" </html>\n",
|
669 |
+
" \"\"\"\n",
|
670 |
+
" \n",
|
671 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
672 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
673 |
+
"\n",
|
674 |
+
"# Gradio UI\n",
|
675 |
+
"with gr.Blocks() as demo:\n",
|
676 |
+
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
677 |
+
" \n",
|
678 |
+
" with gr.Row():\n",
|
679 |
+
" pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
680 |
+
" file_input = gr.File(label=\"Or Upload PDB File\", file_types=['.pdb'], type=\"filepath\")\n",
|
681 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
682 |
+
"\n",
|
683 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
|
684 |
+
" {\n",
|
685 |
+
" \"model\": 0,\n",
|
686 |
+
" \"style\": \"cartoon\",\n",
|
687 |
+
" \"color\": \"whiteCarbon\",\n",
|
688 |
+
" \"residue_range\": \"\",\n",
|
689 |
+
" \"around\": 0,\n",
|
690 |
+
" \"byres\": False,\n",
|
691 |
+
" }\n",
|
692 |
+
" ])\n",
|
693 |
+
"\n",
|
694 |
+
" with gr.Row():\n",
|
695 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
696 |
+
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
697 |
+
"\n",
|
698 |
+
" def process_input(pdb_id, uploaded_file):\n",
|
699 |
+
" \"\"\"\n",
|
700 |
+
" Determine whether to use PDB ID or uploaded file\n",
|
701 |
+
" \"\"\"\n",
|
702 |
+
" if uploaded_file and uploaded_file.endswith('.pdb'):\n",
|
703 |
+
" return uploaded_file\n",
|
704 |
+
" return pdb_id\n",
|
705 |
+
"\n",
|
706 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
707 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
708 |
+
" download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
|
709 |
+
" \n",
|
710 |
+
" prediction_btn.click(\n",
|
711 |
+
" process_pdb, \n",
|
712 |
+
" inputs=[\n",
|
713 |
+
" gr.State(lambda: process_input(pdb_input.value, file_input.value)), \n",
|
714 |
+
" segment_input\n",
|
715 |
+
" ], \n",
|
716 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
717 |
+
" )\n",
|
718 |
+
"\n",
|
719 |
+
" visualize_btn.click(\n",
|
720 |
+
" fetch_pdb, \n",
|
721 |
+
" inputs=[pdb_input], \n",
|
722 |
+
" outputs=molecule_output2\n",
|
723 |
+
" )\n",
|
724 |
+
"\n",
|
725 |
+
" gr.Markdown(\"## Examples\")\n",
|
726 |
+
" gr.Examples(\n",
|
727 |
+
" examples=[\n",
|
728 |
+
" [\"7RPZ\", \"A\"],\n",
|
729 |
+
" [\"2IWI\", \"B\"],\n",
|
730 |
+
" [\"2F6V\", \"A\"]\n",
|
731 |
+
" ],\n",
|
732 |
+
" inputs=[pdb_input, segment_input],\n",
|
733 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
734 |
+
" )\n",
|
735 |
+
"\n",
|
736 |
+
"demo.launch(share=True)"
|
737 |
+
]
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"cell_type": "code",
|
741 |
+
"execution_count": 32,
|
742 |
+
"id": "5b266025-7503-48f5-9371-3642d09f7e93",
|
743 |
+
"metadata": {},
|
744 |
+
"outputs": [
|
745 |
+
{
|
746 |
+
"name": "stdout",
|
747 |
+
"output_type": "stream",
|
748 |
+
"text": [
|
749 |
+
"* Running on local URL: http://127.0.0.1:7890\n",
|
750 |
+
"* Running on public URL: https://70a6e80d8deb42ddd0.gradio.live\n",
|
751 |
+
"\n",
|
752 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
753 |
+
]
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"data": {
|
757 |
+
"text/html": [
|
758 |
+
"<div><iframe src=\"https://70a6e80d8deb42ddd0.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
759 |
+
],
|
760 |
+
"text/plain": [
|
761 |
+
"<IPython.core.display.HTML object>"
|
762 |
+
]
|
763 |
+
},
|
764 |
+
"metadata": {},
|
765 |
+
"output_type": "display_data"
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"data": {
|
769 |
+
"text/plain": []
|
770 |
+
},
|
771 |
+
"execution_count": 32,
|
772 |
+
"metadata": {},
|
773 |
+
"output_type": "execute_result"
|
774 |
+
}
|
775 |
+
],
|
776 |
+
"source": [
|
777 |
+
"import os\n",
|
778 |
+
"from datetime import datetime\n",
|
779 |
+
"import gradio as gr\n",
|
780 |
+
"import numpy as np\n",
|
781 |
+
"import requests\n",
|
782 |
+
"from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
|
783 |
+
"from Bio.PDB.Polypeptide import is_aa\n",
|
784 |
+
"from Bio.SeqUtils import seq1\n",
|
785 |
+
"from gradio_molecule3d import Molecule3D\n",
|
786 |
+
"from typing import Optional, Tuple\n",
|
787 |
+
"\n",
|
788 |
+
"def normalize_scores(scores):\n",
|
789 |
+
" min_score = np.min(scores)\n",
|
790 |
+
" max_score = np.max(scores)\n",
|
791 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
792 |
+
"\n",
|
793 |
+
"def read_mol(pdb_path):\n",
|
794 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
795 |
+
" with open(pdb_path, 'r') as f:\n",
|
796 |
+
" return f.read()\n",
|
797 |
+
"\n",
|
798 |
+
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
|
799 |
+
" \"\"\"\n",
|
800 |
+
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
|
801 |
+
" If a structure file already exists locally, it uses that.\n",
|
802 |
+
" \"\"\"\n",
|
803 |
+
" file_path = download_structure(pdb_id, output_dir)\n",
|
804 |
+
" if file_path:\n",
|
805 |
+
" return file_path\n",
|
806 |
+
" else:\n",
|
807 |
+
" return None\n",
|
808 |
+
"\n",
|
809 |
+
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
|
810 |
+
" \"\"\"\n",
|
811 |
+
" Attempt to download the structure file in CIF or PDB format.\n",
|
812 |
+
" Returns the path to the downloaded file, or None if download fails.\n",
|
813 |
+
" \"\"\"\n",
|
814 |
+
" for ext in ['.cif', '.pdb']:\n",
|
815 |
+
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
|
816 |
+
" if os.path.exists(file_path):\n",
|
817 |
+
" return file_path\n",
|
818 |
+
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
|
819 |
+
" try:\n",
|
820 |
+
" response = requests.get(url, timeout=10)\n",
|
821 |
+
" if response.status_code == 200:\n",
|
822 |
+
" with open(file_path, 'wb') as f:\n",
|
823 |
+
" f.write(response.content)\n",
|
824 |
+
" return file_path\n",
|
825 |
+
" except Exception as e:\n",
|
826 |
+
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
|
827 |
+
" return None\n",
|
828 |
+
"\n",
|
829 |
+
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
|
830 |
+
" \"\"\"\n",
|
831 |
+
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
|
832 |
+
" \"\"\"\n",
|
833 |
+
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
|
834 |
+
" parser = MMCIFParser(QUIET=True)\n",
|
835 |
+
" structure = parser.get_structure('protein', cif_path)\n",
|
836 |
+
" io = PDBIO()\n",
|
837 |
+
" io.set_structure(structure)\n",
|
838 |
+
" io.save(pdb_path)\n",
|
839 |
+
" return pdb_path\n",
|
840 |
+
"\n",
|
841 |
+
"def fetch_pdb(pdb_id):\n",
|
842 |
+
" pdb_path = fetch_structure(pdb_id)\n",
|
843 |
+
" if not pdb_path:\n",
|
844 |
+
" return None\n",
|
845 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
846 |
+
" if ext == '.cif':\n",
|
847 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
848 |
+
" return pdb_path\n",
|
849 |
+
"\n",
|
850 |
+
"def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:\n",
|
851 |
+
" \"\"\"\n",
|
852 |
+
" Create a PDB file with only the specified chain and replace B-factor with prediction scores\n",
|
853 |
+
" \"\"\"\n",
|
854 |
+
" # Read the original PDB file\n",
|
855 |
+
" parser = PDBParser(QUIET=True)\n",
|
856 |
+
" structure = parser.get_structure('protein', input_pdb)\n",
|
857 |
+
" \n",
|
858 |
+
" # Prepare a new structure with only the specified chain\n",
|
859 |
+
" new_structure = structure.copy()\n",
|
860 |
+
" for model in new_structure:\n",
|
861 |
+
" # Remove all chains except the specified one\n",
|
862 |
+
" chains_to_remove = [chain for chain in model if chain.id != chain_id]\n",
|
863 |
+
" for chain in chains_to_remove:\n",
|
864 |
+
" model.detach_child(chain.id)\n",
|
865 |
+
" \n",
|
866 |
+
" # Create a modified PDB with scores in B-factor\n",
|
867 |
+
" scores_dict = {resi: score for resi, score in residue_scores}\n",
|
868 |
+
" for model in new_structure:\n",
|
869 |
+
" for chain in model:\n",
|
870 |
+
" for residue in chain:\n",
|
871 |
+
" if residue.id[1] in scores_dict:\n",
|
872 |
+
" for atom in residue:\n",
|
873 |
+
" atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range\n",
|
874 |
+
" \n",
|
875 |
+
" # Save the modified structure\n",
|
876 |
+
" output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
|
877 |
+
" io = PDBIO()\n",
|
878 |
+
" io.set_structure(new_structure)\n",
|
879 |
+
" io.save(output_pdb)\n",
|
880 |
+
" \n",
|
881 |
+
" return output_pdb\n",
|
882 |
+
"\n",
|
883 |
+
"def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
|
884 |
+
" \"\"\"\n",
|
885 |
+
" Calculate the geometric center of high-scoring residues\n",
|
886 |
+
" \"\"\"\n",
|
887 |
+
" parser = PDBParser(QUIET=True)\n",
|
888 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
889 |
+
" \n",
|
890 |
+
" # Collect coordinates of CA atoms from high-scoring residues\n",
|
891 |
+
" coords = []\n",
|
892 |
+
" for model in structure:\n",
|
893 |
+
" for chain in model:\n",
|
894 |
+
" if chain.id == chain_id:\n",
|
895 |
+
" for residue in chain:\n",
|
896 |
+
" if residue.id[1] in high_score_residues:\n",
|
897 |
+
" if 'CA' in residue: # Use alpha carbon as representative\n",
|
898 |
+
" ca_atom = residue['CA']\n",
|
899 |
+
" coords.append(ca_atom.coord)\n",
|
900 |
+
" \n",
|
901 |
+
" # Calculate geometric center\n",
|
902 |
+
" if coords:\n",
|
903 |
+
" center = np.mean(coords, axis=0)\n",
|
904 |
+
" return center\n",
|
905 |
+
" return None\n",
|
906 |
+
"\n",
|
907 |
+
"def process_pdb(pdb_id_or_file, segment):\n",
|
908 |
+
" # Determine if input is a PDB ID or file path\n",
|
909 |
+
" if pdb_id_or_file.endswith('.pdb'):\n",
|
910 |
+
" pdb_path = pdb_id_or_file\n",
|
911 |
+
" pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
|
912 |
+
" else:\n",
|
913 |
+
" pdb_id = pdb_id_or_file\n",
|
914 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
915 |
+
" \n",
|
916 |
+
" if not pdb_path:\n",
|
917 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
918 |
+
" \n",
|
919 |
+
" # Determine the file format and choose the appropriate parser\n",
|
920 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
921 |
+
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
|
922 |
+
" \n",
|
923 |
+
" try:\n",
|
924 |
+
" # Parse the structure file\n",
|
925 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
926 |
+
" except Exception as e:\n",
|
927 |
+
" return f\"Error parsing structure file: {e}\", None, None\n",
|
928 |
+
" \n",
|
929 |
+
" # Extract the specified chain\n",
|
930 |
+
" try:\n",
|
931 |
+
" chain = structure[0][segment]\n",
|
932 |
+
" except KeyError:\n",
|
933 |
+
" return \"Invalid Chain ID\", None, None\n",
|
934 |
+
" \n",
|
935 |
+
" protein_residues = [res for res in chain if is_aa(res)]\n",
|
936 |
+
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
|
937 |
+
" sequence_id = [res.id[1] for res in protein_residues]\n",
|
938 |
+
" \n",
|
939 |
+
" # Generate random scores for residues\n",
|
940 |
+
" scores = np.random.rand(len(sequence))\n",
|
941 |
+
" normalized_scores = normalize_scores(scores)\n",
|
942 |
+
" \n",
|
943 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
944 |
+
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
|
945 |
+
"\n",
|
946 |
+
" # Identify high and mid scoring residues\n",
|
947 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
948 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
949 |
+
"\n",
|
950 |
+
" # Calculate geometric center of high-scoring residues\n",
|
951 |
+
" geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
|
952 |
+
" pymol_selection = f\"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\"\n",
|
953 |
+
" pymol_center_cmd = f\"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\" if geo_center is not None else \"\"\n",
|
954 |
+
"\n",
|
955 |
+
" # Generate the result string\n",
|
956 |
+
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
957 |
+
" result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
|
958 |
+
" result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
|
959 |
+
" result_str += \"\\n\".join([\n",
|
960 |
+
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
961 |
+
" for i, res in enumerate(protein_residues)])\n",
|
962 |
+
" \n",
|
963 |
+
" # Create prediction and scored PDB files\n",
|
964 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
965 |
+
" with open(prediction_file, \"w\") as f:\n",
|
966 |
+
" f.write(result_str)\n",
|
967 |
+
"\n",
|
968 |
+
" # Create chain-specific PDB with scores in B-factor\n",
|
969 |
+
" scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)\n",
|
970 |
+
"\n",
|
971 |
+
" # Molecule visualization with updated script\n",
|
972 |
+
" mol_vis = molecule(pdb_path, residue_scores, segment)\n",
|
973 |
+
"\n",
|
974 |
+
" # Construct PyMOL command suggestions\n",
|
975 |
+
" pymol_commands = f\"\"\"\n",
|
976 |
+
"PyMOL Visualization Commands:\n",
|
977 |
+
"1. Load PDB: load {os.path.abspath(pdb_path)}\n",
|
978 |
+
"2. Select high-scoring residues: {pymol_selection}\n",
|
979 |
+
"3. Highlight high-scoring residues: show sticks, high_score_residues\n",
|
980 |
+
"{pymol_center_cmd}\n",
|
981 |
+
"\"\"\"\n",
|
982 |
+
" \n",
|
983 |
+
" return result_str + \"\\n\\n\" + pymol_commands, mol_vis, [prediction_file, scored_pdb]\n",
|
984 |
+
"\n",
|
985 |
+
"# molecule() function remains the same as in the previous script, \n",
|
986 |
+
"# but modify the visualization script to ensure cartoon is below stick representations\n",
|
987 |
+
"\n",
|
988 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
989 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
990 |
+
"\n",
|
991 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
992 |
+
" high_score_script = \"\"\n",
|
993 |
+
" if residue_scores is not None:\n",
|
994 |
+
" # Filter residues based on their scores\n",
|
995 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
996 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
997 |
+
" \n",
|
998 |
+
" high_score_script = \"\"\"\n",
|
999 |
+
" // Load the original model and apply white cartoon style\n",
|
1000 |
+
" let chainModel = viewer.addModel(pdb, \"pdb\");\n",
|
1001 |
+
" chainModel.setStyle(\n",
|
1002 |
+
" {\"chain\": \"%s\"}, \n",
|
1003 |
+
" {\"cartoon\": {\"color\": \"white\"}}\n",
|
1004 |
+
" );\n",
|
1005 |
+
"\n",
|
1006 |
+
" // Create a new model for high-scoring residues and apply red sticks style\n",
|
1007 |
+
" let highScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1008 |
+
" highScoreModel.setStyle(\n",
|
1009 |
+
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1010 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
1011 |
+
" );\n",
|
1012 |
+
"\n",
|
1013 |
+
" // Create a new model for medium-scoring residues and apply orange sticks style\n",
|
1014 |
+
" let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1015 |
+
" midScoreModel.setStyle(\n",
|
1016 |
+
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1017 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1018 |
+
" );\n",
|
1019 |
+
" \"\"\" % (\n",
|
1020 |
+
" segment,\n",
|
1021 |
+
" segment,\n",
|
1022 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
1023 |
+
" segment,\n",
|
1024 |
+
" \", \".join(str(resi) for resi in mid_score_residues)\n",
|
1025 |
+
" )\n",
|
1026 |
+
" \n",
|
1027 |
+
" # Generate the full HTML content\n",
|
1028 |
+
" html_content = f\"\"\"\n",
|
1029 |
+
" <!DOCTYPE html>\n",
|
1030 |
+
" <html>\n",
|
1031 |
+
" <head> \n",
|
1032 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
1033 |
+
" <style>\n",
|
1034 |
+
" .mol-container {{\n",
|
1035 |
+
" width: 100%;\n",
|
1036 |
+
" height: 700px;\n",
|
1037 |
+
" position: relative;\n",
|
1038 |
+
" }}\n",
|
1039 |
+
" </style>\n",
|
1040 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
1041 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
1042 |
+
" </head>\n",
|
1043 |
+
" <body>\n",
|
1044 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
1045 |
+
" <script>\n",
|
1046 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
1047 |
+
" $(document).ready(function () {{\n",
|
1048 |
+
" let element = $(\"#container\");\n",
|
1049 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
1050 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
1051 |
+
" \n",
|
1052 |
+
" {high_score_script}\n",
|
1053 |
+
" \n",
|
1054 |
+
" // Add hover functionality\n",
|
1055 |
+
" viewer.setHoverable(\n",
|
1056 |
+
" {{}}, \n",
|
1057 |
+
" true, \n",
|
1058 |
+
" function(atom, viewer, event, container) {{\n",
|
1059 |
+
" if (!atom.label) {{\n",
|
1060 |
+
" atom.label = viewer.addLabel(\n",
|
1061 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
1062 |
+
" {{\n",
|
1063 |
+
" position: atom, \n",
|
1064 |
+
" backgroundColor: 'mintcream', \n",
|
1065 |
+
" fontColor: 'black',\n",
|
1066 |
+
" fontSize: 12,\n",
|
1067 |
+
" padding: 2\n",
|
1068 |
+
" }}\n",
|
1069 |
+
" );\n",
|
1070 |
+
" }}\n",
|
1071 |
+
" }},\n",
|
1072 |
+
" function(atom, viewer) {{\n",
|
1073 |
+
" if (atom.label) {{\n",
|
1074 |
+
" viewer.removeLabel(atom.label);\n",
|
1075 |
+
" delete atom.label;\n",
|
1076 |
+
" }}\n",
|
1077 |
+
" }}\n",
|
1078 |
+
" );\n",
|
1079 |
+
" \n",
|
1080 |
+
" viewer.zoomTo();\n",
|
1081 |
+
" viewer.render();\n",
|
1082 |
+
" viewer.zoom(0.8, 2000);\n",
|
1083 |
+
" }});\n",
|
1084 |
+
" </script>\n",
|
1085 |
+
" </body>\n",
|
1086 |
+
" </html>\n",
|
1087 |
+
" \"\"\"\n",
|
1088 |
+
" \n",
|
1089 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
1090 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
1091 |
+
"\n",
|
1092 |
+
"\n",
|
1093 |
+
"# Gradio UI\n",
|
1094 |
+
"with gr.Blocks() as demo:\n",
|
1095 |
+
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
1096 |
+
" \n",
|
1097 |
+
" with gr.Row():\n",
|
1098 |
+
" pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1099 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
1100 |
+
"\n",
|
1101 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
|
1102 |
+
" {\n",
|
1103 |
+
" \"model\": 0,\n",
|
1104 |
+
" \"style\": \"cartoon\",\n",
|
1105 |
+
" \"color\": \"whiteCarbon\",\n",
|
1106 |
+
" \"residue_range\": \"\",\n",
|
1107 |
+
" \"around\": 0,\n",
|
1108 |
+
" \"byres\": False,\n",
|
1109 |
+
" }\n",
|
1110 |
+
" ])\n",
|
1111 |
+
"\n",
|
1112 |
+
" with gr.Row():\n",
|
1113 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
1114 |
+
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
1115 |
+
"\n",
|
1116 |
+
"\n",
|
1117 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
1118 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1119 |
+
" download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
|
1120 |
+
" \n",
|
1121 |
+
" prediction_btn.click(\n",
|
1122 |
+
" process_pdb, \n",
|
1123 |
+
" inputs=[\n",
|
1124 |
+
" pdb_input, \n",
|
1125 |
+
" segment_input\n",
|
1126 |
+
" ], \n",
|
1127 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1128 |
+
" )\n",
|
1129 |
+
"\n",
|
1130 |
+
" visualize_btn.click(\n",
|
1131 |
+
" fetch_pdb, \n",
|
1132 |
+
" inputs=[pdb_input], \n",
|
1133 |
+
" outputs=molecule_output2\n",
|
1134 |
+
" )\n",
|
1135 |
+
"\n",
|
1136 |
+
" gr.Markdown(\"## Examples\")\n",
|
1137 |
+
" gr.Examples(\n",
|
1138 |
+
" examples=[\n",
|
1139 |
+
" [\"7RPZ\", \"A\"],\n",
|
1140 |
+
" [\"2IWI\", \"B\"],\n",
|
1141 |
+
" [\"2F6V\", \"A\"]\n",
|
1142 |
+
" ],\n",
|
1143 |
+
" inputs=[pdb_input, segment_input],\n",
|
1144 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1145 |
+
" )\n",
|
1146 |
+
"\n",
|
1147 |
+
"demo.launch(share=True)"
|
1148 |
+
]
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"cell_type": "code",
|
1152 |
+
"execution_count": 38,
|
1153 |
+
"id": "514fad12-a31a-495f-af9e-04a18e11175e",
|
1154 |
+
"metadata": {},
|
1155 |
+
"outputs": [
|
1156 |
+
{
|
1157 |
+
"name": "stdout",
|
1158 |
+
"output_type": "stream",
|
1159 |
+
"text": [
|
1160 |
+
"* Running on local URL: http://127.0.0.1:7896\n",
|
1161 |
+
"* Running on public URL: https://387fb4706015321f92.gradio.live\n",
|
1162 |
+
"\n",
|
1163 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
1164 |
+
]
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"data": {
|
1168 |
+
"text/html": [
|
1169 |
+
"<div><iframe src=\"https://387fb4706015321f92.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
1170 |
+
],
|
1171 |
+
"text/plain": [
|
1172 |
+
"<IPython.core.display.HTML object>"
|
1173 |
+
]
|
1174 |
+
},
|
1175 |
+
"metadata": {},
|
1176 |
+
"output_type": "display_data"
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"data": {
|
1180 |
+
"text/plain": []
|
1181 |
+
},
|
1182 |
+
"execution_count": 38,
|
1183 |
+
"metadata": {},
|
1184 |
+
"output_type": "execute_result"
|
1185 |
+
}
|
1186 |
+
],
|
1187 |
+
"source": [
|
1188 |
+
"import os\n",
|
1189 |
+
"from datetime import datetime\n",
|
1190 |
+
"import gradio as gr\n",
|
1191 |
+
"import numpy as np\n",
|
1192 |
+
"import requests\n",
|
1193 |
+
"from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
|
1194 |
+
"from Bio.PDB.Polypeptide import is_aa\n",
|
1195 |
+
"from Bio.SeqUtils import seq1\n",
|
1196 |
+
"from gradio_molecule3d import Molecule3D\n",
|
1197 |
+
"from typing import Optional, Tuple\n",
|
1198 |
+
"\n",
|
1199 |
+
"def normalize_scores(scores):\n",
|
1200 |
+
" min_score = np.min(scores)\n",
|
1201 |
+
" max_score = np.max(scores)\n",
|
1202 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
1203 |
+
"\n",
|
1204 |
+
"def read_mol(pdb_path):\n",
|
1205 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
1206 |
+
" with open(pdb_path, 'r') as f:\n",
|
1207 |
+
" return f.read()\n",
|
1208 |
+
"\n",
|
1209 |
+
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
|
1210 |
+
" \"\"\"\n",
|
1211 |
+
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
|
1212 |
+
" If a structure file already exists locally, it uses that.\n",
|
1213 |
+
" \"\"\"\n",
|
1214 |
+
" file_path = download_structure(pdb_id, output_dir)\n",
|
1215 |
+
" if file_path:\n",
|
1216 |
+
" return file_path\n",
|
1217 |
+
" else:\n",
|
1218 |
+
" return None\n",
|
1219 |
+
"\n",
|
1220 |
+
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
|
1221 |
+
" \"\"\"\n",
|
1222 |
+
" Attempt to download the structure file in CIF or PDB format.\n",
|
1223 |
+
" Returns the path to the downloaded file, or None if download fails.\n",
|
1224 |
+
" \"\"\"\n",
|
1225 |
+
" for ext in ['.cif', '.pdb']:\n",
|
1226 |
+
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
|
1227 |
+
" if os.path.exists(file_path):\n",
|
1228 |
+
" return file_path\n",
|
1229 |
+
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
|
1230 |
+
" try:\n",
|
1231 |
+
" response = requests.get(url, timeout=10)\n",
|
1232 |
+
" if response.status_code == 200:\n",
|
1233 |
+
" with open(file_path, 'wb') as f:\n",
|
1234 |
+
" f.write(response.content)\n",
|
1235 |
+
" return file_path\n",
|
1236 |
+
" except Exception as e:\n",
|
1237 |
+
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
|
1238 |
+
" return None\n",
|
1239 |
+
"\n",
|
1240 |
+
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
|
1241 |
+
" \"\"\"\n",
|
1242 |
+
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
|
1243 |
+
" \"\"\"\n",
|
1244 |
+
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
|
1245 |
+
" parser = MMCIFParser(QUIET=True)\n",
|
1246 |
+
" structure = parser.get_structure('protein', cif_path)\n",
|
1247 |
+
" io = PDBIO()\n",
|
1248 |
+
" io.set_structure(structure)\n",
|
1249 |
+
" io.save(pdb_path)\n",
|
1250 |
+
" return pdb_path\n",
|
1251 |
+
"\n",
|
1252 |
+
"def fetch_pdb(pdb_id):\n",
|
1253 |
+
" pdb_path = fetch_structure(pdb_id)\n",
|
1254 |
+
" if not pdb_path:\n",
|
1255 |
+
" return None\n",
|
1256 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
1257 |
+
" if ext == '.cif':\n",
|
1258 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
1259 |
+
" return pdb_path\n",
|
1260 |
+
"\n",
|
1261 |
+
"def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:\n",
|
1262 |
+
" \"\"\"\n",
|
1263 |
+
" Create a PDB file with only the specified chain and replace B-factor with prediction scores\n",
|
1264 |
+
" \"\"\"\n",
|
1265 |
+
" # Read the original PDB file\n",
|
1266 |
+
" parser = PDBParser(QUIET=True)\n",
|
1267 |
+
" structure = parser.get_structure('protein', input_pdb)\n",
|
1268 |
+
" \n",
|
1269 |
+
" # Prepare a new structure with only the specified chain\n",
|
1270 |
+
" new_structure = structure.copy()\n",
|
1271 |
+
" for model in new_structure:\n",
|
1272 |
+
" # Remove all chains except the specified one\n",
|
1273 |
+
" chains_to_remove = [chain for chain in model if chain.id != chain_id]\n",
|
1274 |
+
" for chain in chains_to_remove:\n",
|
1275 |
+
" model.detach_child(chain.id)\n",
|
1276 |
+
" \n",
|
1277 |
+
" # Create a modified PDB with scores in B-factor\n",
|
1278 |
+
" scores_dict = {resi: score for resi, score in residue_scores}\n",
|
1279 |
+
" for model in new_structure:\n",
|
1280 |
+
" for chain in model:\n",
|
1281 |
+
" for residue in chain:\n",
|
1282 |
+
" if residue.id[1] in scores_dict:\n",
|
1283 |
+
" for atom in residue:\n",
|
1284 |
+
" atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range\n",
|
1285 |
+
" \n",
|
1286 |
+
" # Save the modified structure\n",
|
1287 |
+
" output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
|
1288 |
+
" io = PDBIO()\n",
|
1289 |
+
" io.set_structure(new_structure)\n",
|
1290 |
+
" io.save(output_pdb)\n",
|
1291 |
+
" \n",
|
1292 |
+
" return output_pdb\n",
|
1293 |
+
"\n",
|
1294 |
+
"def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
|
1295 |
+
" \"\"\"\n",
|
1296 |
+
" Calculate the geometric center of high-scoring residues\n",
|
1297 |
+
" \"\"\"\n",
|
1298 |
+
" parser = PDBParser(QUIET=True)\n",
|
1299 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
1300 |
+
" \n",
|
1301 |
+
" # Collect coordinates of CA atoms from high-scoring residues\n",
|
1302 |
+
" coords = []\n",
|
1303 |
+
" for model in structure:\n",
|
1304 |
+
" for chain in model:\n",
|
1305 |
+
" if chain.id == chain_id:\n",
|
1306 |
+
" for residue in chain:\n",
|
1307 |
+
" if residue.id[1] in high_score_residues:\n",
|
1308 |
+
" if 'CA' in residue: # Use alpha carbon as representative\n",
|
1309 |
+
" ca_atom = residue['CA']\n",
|
1310 |
+
" coords.append(ca_atom.coord)\n",
|
1311 |
+
" \n",
|
1312 |
+
" # Calculate geometric center\n",
|
1313 |
+
" if coords:\n",
|
1314 |
+
" center = np.mean(coords, axis=0)\n",
|
1315 |
+
" return center\n",
|
1316 |
+
" return None\n",
|
1317 |
+
"\n",
|
1318 |
+
"def process_pdb(pdb_id_or_file, segment):\n",
|
1319 |
+
" # Determine if input is a PDB ID or file path\n",
|
1320 |
+
" if pdb_id_or_file.endswith('.pdb'):\n",
|
1321 |
+
" pdb_path = pdb_id_or_file\n",
|
1322 |
+
" pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
|
1323 |
+
" else:\n",
|
1324 |
+
" pdb_id = pdb_id_or_file\n",
|
1325 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
1326 |
+
" \n",
|
1327 |
+
" if not pdb_path:\n",
|
1328 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
1329 |
+
" \n",
|
1330 |
+
" # Determine the file format and choose the appropriate parser\n",
|
1331 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
1332 |
+
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
|
1333 |
+
" \n",
|
1334 |
+
" try:\n",
|
1335 |
+
" # Parse the structure file\n",
|
1336 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
1337 |
+
" except Exception as e:\n",
|
1338 |
+
" return f\"Error parsing structure file: {e}\", None, None\n",
|
1339 |
+
" \n",
|
1340 |
+
" # Extract the specified chain\n",
|
1341 |
+
" try:\n",
|
1342 |
+
" chain = structure[0][segment]\n",
|
1343 |
+
" except KeyError:\n",
|
1344 |
+
" return \"Invalid Chain ID\", None, None\n",
|
1345 |
+
" \n",
|
1346 |
+
" protein_residues = [res for res in chain if is_aa(res)]\n",
|
1347 |
+
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
|
1348 |
+
" sequence_id = [res.id[1] for res in protein_residues]\n",
|
1349 |
+
" \n",
|
1350 |
+
" # Generate random scores for residues\n",
|
1351 |
+
" scores = np.random.rand(len(sequence))\n",
|
1352 |
+
" normalized_scores = normalize_scores(scores)\n",
|
1353 |
+
" \n",
|
1354 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
1355 |
+
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
|
1356 |
+
"\n",
|
1357 |
+
" # Identify high and mid scoring residues\n",
|
1358 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
1359 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
1360 |
+
"\n",
|
1361 |
+
" # Calculate geometric center of high-scoring residues\n",
|
1362 |
+
" geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
|
1363 |
+
" pymol_selection = f\"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\"\n",
|
1364 |
+
" pymol_center_cmd = f\"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\" if geo_center is not None else \"\"\n",
|
1365 |
+
"\n",
|
1366 |
+
" # Generate the result string\n",
|
1367 |
+
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
1368 |
+
" result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
|
1369 |
+
" result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
|
1370 |
+
" result_str += \"\\n\".join([\n",
|
1371 |
+
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1372 |
+
" for i, res in enumerate(protein_residues)])\n",
|
1373 |
+
" \n",
|
1374 |
+
" # Create prediction and scored PDB files\n",
|
1375 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
1376 |
+
" with open(prediction_file, \"w\") as f:\n",
|
1377 |
+
" f.write(result_str)\n",
|
1378 |
+
"\n",
|
1379 |
+
" # Create chain-specific PDB with scores in B-factor\n",
|
1380 |
+
" scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)\n",
|
1381 |
+
"\n",
|
1382 |
+
" # Molecule visualization with updated script\n",
|
1383 |
+
" mol_vis = molecule(pdb_path, residue_scores, segment)\n",
|
1384 |
+
"\n",
|
1385 |
+
" # Construct PyMOL command suggestions\n",
|
1386 |
+
" pymol_commands = f\"\"\"\n",
|
1387 |
+
"PyMOL Visualization Commands:\n",
|
1388 |
+
"1. Load PDB: load {os.path.abspath(pdb_path)}\n",
|
1389 |
+
"2. Select high-scoring residues: {pymol_selection}\n",
|
1390 |
+
"3. Highlight high-scoring residues: show sticks, high_score_residues\n",
|
1391 |
+
"{pymol_center_cmd}\n",
|
1392 |
+
"\"\"\"\n",
|
1393 |
+
" \n",
|
1394 |
+
" return result_str + \"\\n\\n\" + pymol_commands, mol_vis, [prediction_file, scored_pdb]\n",
|
1395 |
+
"\n",
|
1396 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
1397 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
1398 |
+
"\n",
|
1399 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
1400 |
+
" high_score_script = \"\"\n",
|
1401 |
+
" if residue_scores is not None:\n",
|
1402 |
+
" # Filter residues based on their scores\n",
|
1403 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
1404 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
1405 |
+
" \n",
|
1406 |
+
" high_score_script = \"\"\"\n",
|
1407 |
+
" // Load the original model and apply white cartoon style\n",
|
1408 |
+
" let chainModel = viewer.addModel(pdb, \"pdb\");\n",
|
1409 |
+
" chainModel.setStyle({}, {});\n",
|
1410 |
+
" chainModel.setStyle(\n",
|
1411 |
+
" {\"chain\": \"%s\"}, \n",
|
1412 |
+
" {\"cartoon\": {\"color\": \"white\"}}\n",
|
1413 |
+
" );\n",
|
1414 |
+
"\n",
|
1415 |
+
" // Create a new model for high-scoring residues and apply red sticks style\n",
|
1416 |
+
" let highScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1417 |
+
" highScoreModel.setStyle({}, {});\n",
|
1418 |
+
" highScoreModel.setStyle(\n",
|
1419 |
+
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1420 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
1421 |
+
" );\n",
|
1422 |
+
"\n",
|
1423 |
+
" // Create a new model for medium-scoring residues and apply orange sticks style\n",
|
1424 |
+
" let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1425 |
+
" midScoreModel.setStyle({}, {});\n",
|
1426 |
+
" midScoreModel.setStyle(\n",
|
1427 |
+
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1428 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1429 |
+
" );\n",
|
1430 |
+
" \"\"\" % (\n",
|
1431 |
+
" segment,\n",
|
1432 |
+
" segment,\n",
|
1433 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
1434 |
+
" segment,\n",
|
1435 |
+
" \", \".join(str(resi) for resi in mid_score_residues)\n",
|
1436 |
+
" )\n",
|
1437 |
+
" \n",
|
1438 |
+
" # Generate the full HTML content\n",
|
1439 |
+
" html_content = f\"\"\"\n",
|
1440 |
+
" <!DOCTYPE html>\n",
|
1441 |
+
" <html>\n",
|
1442 |
+
" <head> \n",
|
1443 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
1444 |
+
" <style>\n",
|
1445 |
+
" .mol-container {{\n",
|
1446 |
+
" width: 100%;\n",
|
1447 |
+
" height: 700px;\n",
|
1448 |
+
" position: relative;\n",
|
1449 |
+
" }}\n",
|
1450 |
+
" </style>\n",
|
1451 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
1452 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
1453 |
+
" </head>\n",
|
1454 |
+
" <body>\n",
|
1455 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
1456 |
+
" <script>\n",
|
1457 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
1458 |
+
" $(document).ready(function () {{\n",
|
1459 |
+
" let element = $(\"#container\");\n",
|
1460 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
1461 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
1462 |
+
" \n",
|
1463 |
+
" {high_score_script}\n",
|
1464 |
+
" \n",
|
1465 |
+
" // Add hover functionality\n",
|
1466 |
+
" viewer.setHoverable(\n",
|
1467 |
+
" {{}}, \n",
|
1468 |
+
" true, \n",
|
1469 |
+
" function(atom, viewer, event, container) {{\n",
|
1470 |
+
" if (!atom.label) {{\n",
|
1471 |
+
" atom.label = viewer.addLabel(\n",
|
1472 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
1473 |
+
" {{\n",
|
1474 |
+
" position: atom, \n",
|
1475 |
+
" backgroundColor: 'mintcream', \n",
|
1476 |
+
" fontColor: 'black',\n",
|
1477 |
+
" fontSize: 12,\n",
|
1478 |
+
" padding: 2\n",
|
1479 |
+
" }}\n",
|
1480 |
+
" );\n",
|
1481 |
+
" }}\n",
|
1482 |
+
" }},\n",
|
1483 |
+
" function(atom, viewer) {{\n",
|
1484 |
+
" if (atom.label) {{\n",
|
1485 |
+
" viewer.removeLabel(atom.label);\n",
|
1486 |
+
" delete atom.label;\n",
|
1487 |
+
" }}\n",
|
1488 |
+
" }}\n",
|
1489 |
+
" );\n",
|
1490 |
+
" \n",
|
1491 |
+
" viewer.zoomTo();\n",
|
1492 |
+
" viewer.render();\n",
|
1493 |
+
" viewer.zoom(0.8, 2000);\n",
|
1494 |
+
" }});\n",
|
1495 |
+
" </script>\n",
|
1496 |
+
" </body>\n",
|
1497 |
+
" </html>\n",
|
1498 |
+
" \"\"\"\n",
|
1499 |
+
" \n",
|
1500 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
1501 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
1502 |
+
"\n",
|
1503 |
+
"\n",
|
1504 |
+
"# Gradio UI\n",
|
1505 |
+
"with gr.Blocks() as demo:\n",
|
1506 |
+
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
1507 |
+
" \n",
|
1508 |
+
" with gr.Row():\n",
|
1509 |
+
" pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1510 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
1511 |
+
"\n",
|
1512 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
|
1513 |
+
" {\n",
|
1514 |
+
" \"model\": 0,\n",
|
1515 |
+
" \"style\": \"cartoon\",\n",
|
1516 |
+
" \"color\": \"whiteCarbon\",\n",
|
1517 |
+
" \"residue_range\": \"\",\n",
|
1518 |
+
" \"around\": 0,\n",
|
1519 |
+
" \"byres\": False,\n",
|
1520 |
+
" }\n",
|
1521 |
+
" ])\n",
|
1522 |
+
"\n",
|
1523 |
+
" with gr.Row():\n",
|
1524 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
1525 |
+
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
1526 |
+
"\n",
|
1527 |
+
"\n",
|
1528 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
1529 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1530 |
+
" download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
|
1531 |
+
" \n",
|
1532 |
+
" prediction_btn.click(\n",
|
1533 |
+
" process_pdb, \n",
|
1534 |
+
" inputs=[\n",
|
1535 |
+
" pdb_input, \n",
|
1536 |
+
" segment_input\n",
|
1537 |
+
" ], \n",
|
1538 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1539 |
+
" )\n",
|
1540 |
+
"\n",
|
1541 |
+
" visualize_btn.click(\n",
|
1542 |
+
" fetch_pdb, \n",
|
1543 |
+
" inputs=[pdb_input], \n",
|
1544 |
+
" outputs=molecule_output2\n",
|
1545 |
+
" )\n",
|
1546 |
+
"\n",
|
1547 |
+
" gr.Markdown(\"## Examples\")\n",
|
1548 |
+
" gr.Examples(\n",
|
1549 |
+
" examples=[\n",
|
1550 |
+
" [\"7RPZ\", \"A\"],\n",
|
1551 |
+
" [\"2IWI\", \"B\"],\n",
|
1552 |
+
" [\"2F6V\", \"A\"]\n",
|
1553 |
+
" ],\n",
|
1554 |
+
" inputs=[pdb_input, segment_input],\n",
|
1555 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1556 |
+
" )\n",
|
1557 |
+
"\n",
|
1558 |
+
"demo.launch(share=True)"
|
1559 |
+
]
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"cell_type": "code",
|
1563 |
+
"execution_count": null,
|
1564 |
+
"id": "2f960cc2-8330-40f1-b54d-693ce922fa74",
|
1565 |
+
"metadata": {},
|
1566 |
+
"outputs": [],
|
1567 |
+
"source": []
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"cell_type": "code",
|
1571 |
+
"execution_count": null,
|
1572 |
+
"id": "cec41eef-c414-440f-a0ea-63fc8d3acf0b",
|
1573 |
+
"metadata": {},
|
1574 |
+
"outputs": [],
|
1575 |
+
"source": []
|
1576 |
+
}
|
1577 |
+
],
|
1578 |
+
"metadata": {
|
1579 |
+
"kernelspec": {
|
1580 |
+
"display_name": "Python (LLM)",
|
1581 |
+
"language": "python",
|
1582 |
+
"name": "llm"
|
1583 |
+
},
|
1584 |
+
"language_info": {
|
1585 |
+
"codemirror_mode": {
|
1586 |
+
"name": "ipython",
|
1587 |
+
"version": 3
|
1588 |
+
},
|
1589 |
+
"file_extension": ".py",
|
1590 |
+
"mimetype": "text/x-python",
|
1591 |
+
"name": "python",
|
1592 |
+
"nbconvert_exporter": "python",
|
1593 |
+
"pygments_lexer": "ipython3",
|
1594 |
+
"version": "3.12.7"
|
1595 |
+
}
|
1596 |
+
},
|
1597 |
+
"nbformat": 4,
|
1598 |
+
"nbformat_minor": 5
|
1599 |
+
}
|
2IWI.cif
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2IWI.pdb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
2IWI_predictions.txt
CHANGED
@@ -1,244 +1,249 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
G
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
R
|
35 |
-
|
36 |
-
|
37 |
-
V
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
L
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
G
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
E
|
74 |
-
|
75 |
-
|
76 |
-
L
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
E
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
Q
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
H
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
D
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
S
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
D
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
A
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
C
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
P
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GLY 22 G 0.18
|
2 |
+
LYS 23 K 0.51
|
3 |
+
ASP 24 D 0.12
|
4 |
+
ARG 25 R 0.25
|
5 |
+
GLU 26 E 0.08
|
6 |
+
ALA 27 A 0.82
|
7 |
+
PHE 28 F 0.65
|
8 |
+
GLU 29 E 0.65
|
9 |
+
ALA 30 A 0.22
|
10 |
+
GLU 31 E 0.49
|
11 |
+
TYR 32 Y 0.57
|
12 |
+
ARG 33 R 0.56
|
13 |
+
LEU 34 L 0.83
|
14 |
+
GLY 35 G 0.42
|
15 |
+
PRO 36 P 0.97
|
16 |
+
LEU 37 L 0.65
|
17 |
+
LEU 38 L 0.08
|
18 |
+
GLY 39 G 0.05
|
19 |
+
LYS 40 K 0.55
|
20 |
+
GLY 41 G 0.38
|
21 |
+
GLY 42 G 0.45
|
22 |
+
PHE 43 F 0.92
|
23 |
+
GLY 44 G 0.00
|
24 |
+
THR 45 T 0.76
|
25 |
+
VAL 46 V 0.63
|
26 |
+
PHE 47 F 0.97
|
27 |
+
ALA 48 A 0.57
|
28 |
+
GLY 49 G 0.94
|
29 |
+
HIS 50 H 0.40
|
30 |
+
ARG 51 R 0.27
|
31 |
+
LEU 52 L 0.65
|
32 |
+
THR 53 T 0.84
|
33 |
+
ASP 54 D 0.85
|
34 |
+
ARG 55 R 0.46
|
35 |
+
LEU 56 L 0.87
|
36 |
+
GLN 57 Q 0.76
|
37 |
+
VAL 58 V 0.22
|
38 |
+
ALA 59 A 0.65
|
39 |
+
ILE 60 I 0.87
|
40 |
+
LYS 61 K 0.69
|
41 |
+
VAL 62 V 0.76
|
42 |
+
ILE 63 I 0.70
|
43 |
+
PRO 64 P 0.04
|
44 |
+
ARG 65 R 0.20
|
45 |
+
THR 79 T 0.80
|
46 |
+
CYS 80 C 0.82
|
47 |
+
PRO 81 P 0.72
|
48 |
+
LEU 82 L 0.17
|
49 |
+
GLU 83 E 0.70
|
50 |
+
VAL 84 V 0.21
|
51 |
+
ALA 85 A 0.15
|
52 |
+
LEU 86 L 0.28
|
53 |
+
LEU 87 L 0.03
|
54 |
+
TRP 88 W 0.18
|
55 |
+
LYS 89 K 0.01
|
56 |
+
VAL 90 V 0.43
|
57 |
+
GLY 91 G 0.25
|
58 |
+
ALA 92 A 0.65
|
59 |
+
GLY 93 G 0.00
|
60 |
+
GLY 94 G 0.52
|
61 |
+
GLY 95 G 0.22
|
62 |
+
HIS 96 H 0.03
|
63 |
+
PRO 97 P 0.57
|
64 |
+
GLY 98 G 0.32
|
65 |
+
VAL 99 V 0.89
|
66 |
+
ILE 100 I 0.14
|
67 |
+
ARG 101 R 0.66
|
68 |
+
LEU 102 L 0.18
|
69 |
+
LEU 103 L 0.30
|
70 |
+
ASP 104 D 0.36
|
71 |
+
TRP 105 W 0.83
|
72 |
+
PHE 106 F 0.77
|
73 |
+
GLU 107 E 0.95
|
74 |
+
PHE 112 F 0.04
|
75 |
+
MET 113 M 0.05
|
76 |
+
LEU 114 L 0.32
|
77 |
+
VAL 115 V 1.00
|
78 |
+
LEU 116 L 0.43
|
79 |
+
GLU 117 E 0.76
|
80 |
+
ARG 118 R 0.65
|
81 |
+
PRO 119 P 0.28
|
82 |
+
LEU 120 L 0.74
|
83 |
+
PRO 121 P 0.69
|
84 |
+
ALA 122 A 0.89
|
85 |
+
GLN 123 Q 0.68
|
86 |
+
ASP 124 D 0.67
|
87 |
+
LEU 125 L 0.89
|
88 |
+
PHE 126 F 0.33
|
89 |
+
ASP 127 D 0.05
|
90 |
+
TYR 128 Y 0.59
|
91 |
+
ILE 129 I 0.19
|
92 |
+
THR 130 T 0.88
|
93 |
+
GLU 131 E 0.24
|
94 |
+
LYS 132 K 0.04
|
95 |
+
GLY 133 G 0.99
|
96 |
+
PRO 134 P 0.43
|
97 |
+
LEU 135 L 0.31
|
98 |
+
GLY 136 G 0.83
|
99 |
+
GLU 137 E 0.12
|
100 |
+
GLY 138 G 0.02
|
101 |
+
PRO 139 P 0.71
|
102 |
+
SER 140 S 0.70
|
103 |
+
ARG 141 R 0.63
|
104 |
+
CYS 142 C 0.70
|
105 |
+
PHE 143 F 0.92
|
106 |
+
PHE 144 F 0.02
|
107 |
+
GLY 145 G 0.72
|
108 |
+
GLN 146 Q 0.03
|
109 |
+
VAL 147 V 0.70
|
110 |
+
VAL 148 V 0.34
|
111 |
+
ALA 149 A 0.95
|
112 |
+
ALA 150 A 0.39
|
113 |
+
ILE 151 I 0.21
|
114 |
+
GLN 152 Q 0.86
|
115 |
+
HIS 153 H 0.11
|
116 |
+
CYS 154 C 0.30
|
117 |
+
HIS 155 H 0.12
|
118 |
+
SER 156 S 0.55
|
119 |
+
ARG 157 R 0.20
|
120 |
+
GLY 158 G 0.32
|
121 |
+
VAL 159 V 0.80
|
122 |
+
VAL 160 V 0.43
|
123 |
+
HIS 161 H 0.99
|
124 |
+
ARG 162 R 0.13
|
125 |
+
ASP 163 D 0.73
|
126 |
+
ILE 164 I 0.70
|
127 |
+
LYS 165 K 0.88
|
128 |
+
ASP 166 D 0.56
|
129 |
+
GLU 167 E 0.61
|
130 |
+
ASN 168 N 0.01
|
131 |
+
ILE 169 I 0.48
|
132 |
+
LEU 170 L 0.18
|
133 |
+
ILE 171 I 0.28
|
134 |
+
ASP 172 D 0.79
|
135 |
+
LEU 173 L 0.33
|
136 |
+
ARG 174 R 0.31
|
137 |
+
ARG 175 R 0.39
|
138 |
+
GLY 176 G 0.19
|
139 |
+
CYS 177 C 0.57
|
140 |
+
ALA 178 A 0.99
|
141 |
+
LYS 179 K 0.47
|
142 |
+
LEU 180 L 0.02
|
143 |
+
ILE 181 I 0.81
|
144 |
+
ASP 182 D 0.59
|
145 |
+
PHE 183 F 0.74
|
146 |
+
GLY 184 G 0.43
|
147 |
+
SER 185 S 0.90
|
148 |
+
GLY 186 G 0.87
|
149 |
+
ALA 187 A 0.39
|
150 |
+
LEU 188 L 0.43
|
151 |
+
LEU 189 L 0.84
|
152 |
+
HIS 190 H 0.91
|
153 |
+
ASP 191 D 0.45
|
154 |
+
GLU 192 E 0.00
|
155 |
+
PRO 193 P 0.86
|
156 |
+
TYR 194 Y 0.11
|
157 |
+
THR 195 T 0.54
|
158 |
+
ASP 196 D 0.70
|
159 |
+
PHE 197 F 0.62
|
160 |
+
ASP 198 D 0.31
|
161 |
+
GLY 199 G 0.41
|
162 |
+
THR 200 T 0.85
|
163 |
+
ARG 201 R 0.18
|
164 |
+
VAL 202 V 0.10
|
165 |
+
TYR 203 Y 0.22
|
166 |
+
SER 204 S 0.31
|
167 |
+
PRO 205 P 0.41
|
168 |
+
PRO 206 P 0.87
|
169 |
+
GLU 207 E 0.77
|
170 |
+
TRP 208 W 0.51
|
171 |
+
ILE 209 I 0.18
|
172 |
+
SER 210 S 0.03
|
173 |
+
ARG 211 R 0.41
|
174 |
+
HIS 212 H 0.83
|
175 |
+
GLN 213 Q 0.30
|
176 |
+
TYR 214 Y 0.38
|
177 |
+
HIS 215 H 0.28
|
178 |
+
ALA 216 A 0.51
|
179 |
+
LEU 217 L 0.61
|
180 |
+
PRO 218 P 0.77
|
181 |
+
ALA 219 A 0.79
|
182 |
+
THR 220 T 0.32
|
183 |
+
VAL 221 V 0.35
|
184 |
+
TRP 222 W 0.44
|
185 |
+
SER 223 S 0.35
|
186 |
+
LEU 224 L 0.67
|
187 |
+
GLY 225 G 0.21
|
188 |
+
ILE 226 I 0.88
|
189 |
+
LEU 227 L 0.38
|
190 |
+
LEU 228 L 0.27
|
191 |
+
TYR 229 Y 0.53
|
192 |
+
ASP 230 D 0.36
|
193 |
+
MET 231 M 0.76
|
194 |
+
VAL 232 V 0.59
|
195 |
+
CYS 233 C 0.44
|
196 |
+
GLY 234 G 0.88
|
197 |
+
ASP 235 D 0.54
|
198 |
+
ILE 236 I 0.63
|
199 |
+
PRO 237 P 0.41
|
200 |
+
PHE 238 F 0.84
|
201 |
+
GLU 239 E 0.66
|
202 |
+
ARG 240 R 0.20
|
203 |
+
ASP 241 D 0.08
|
204 |
+
GLN 242 Q 0.23
|
205 |
+
GLU 243 E 0.31
|
206 |
+
ILE 244 I 0.17
|
207 |
+
LEU 245 L 0.58
|
208 |
+
GLU 246 E 0.76
|
209 |
+
ALA 247 A 0.82
|
210 |
+
GLU 248 E 0.39
|
211 |
+
LEU 249 L 0.53
|
212 |
+
HIS 250 H 0.67
|
213 |
+
PHE 251 F 0.36
|
214 |
+
PRO 252 P 0.16
|
215 |
+
ALA 253 A 0.08
|
216 |
+
HIS 254 H 0.53
|
217 |
+
VAL 255 V 0.39
|
218 |
+
SER 256 S 0.24
|
219 |
+
PRO 257 P 0.06
|
220 |
+
ASP 258 D 0.79
|
221 |
+
CYS 259 C 0.54
|
222 |
+
CYS 260 C 0.46
|
223 |
+
ALA 261 A 0.29
|
224 |
+
LEU 262 L 0.60
|
225 |
+
ILE 263 I 0.33
|
226 |
+
ARG 264 R 0.56
|
227 |
+
ARG 265 R 0.95
|
228 |
+
CYS 266 C 0.63
|
229 |
+
LEU 267 L 0.83
|
230 |
+
ALA 268 A 0.22
|
231 |
+
PRO 269 P 0.18
|
232 |
+
LYS 270 K 0.71
|
233 |
+
PRO 271 P 0.91
|
234 |
+
SER 272 S 0.84
|
235 |
+
SER 273 S 0.62
|
236 |
+
ARG 274 R 0.22
|
237 |
+
PRO 275 P 0.34
|
238 |
+
SER 276 S 0.74
|
239 |
+
LEU 277 L 0.41
|
240 |
+
GLU 278 E 0.78
|
241 |
+
GLU 279 E 0.76
|
242 |
+
ILE 280 I 0.40
|
243 |
+
LEU 281 L 0.27
|
244 |
+
LEU 282 L 0.23
|
245 |
+
ASP 283 D 0.65
|
246 |
+
PRO 284 P 0.45
|
247 |
+
TRP 285 W 0.72
|
248 |
+
MET 286 M 0.57
|
249 |
+
GLN 287 Q 0.29
|
4BDU.cif
ADDED
The diff for this file is too large to render.
See raw diff
|
|
4BDU.pdb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
4BDU_A_scored.pdb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
4BDU_C_scored.pdb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
4BDU_predictions.txt
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Prediction for PDB: 4BDU, Chain: A
|
2 |
+
Date: 2024-12-11 16:57:50
|
3 |
+
|
4 |
+
Columns: Residue Name, Residue Number, One-letter Code, Normalized Score
|
5 |
+
|
6 |
+
SER 2 S 0.05
|
7 |
+
LYS 3 K 0.39
|
8 |
+
GLY 4 G 0.24
|
9 |
+
GLU 5 E 0.26
|
10 |
+
GLU 6 E 0.35
|
11 |
+
LEU 7 L 0.45
|
12 |
+
PHE 8 F 0.82
|
13 |
+
THR 9 T 0.32
|
14 |
+
GLY 10 G 0.73
|
15 |
+
VAL 11 V 0.42
|
16 |
+
VAL 12 V 0.33
|
17 |
+
PRO 13 P 0.96
|
18 |
+
ILE 14 I 0.68
|
19 |
+
LEU 15 L 0.71
|
20 |
+
VAL 16 V 0.84
|
21 |
+
GLU 17 E 0.26
|
22 |
+
LEU 18 L 0.54
|
23 |
+
ASP 19 D 0.46
|
24 |
+
GLY 20 G 0.12
|
25 |
+
ASP 21 D 0.57
|
26 |
+
VAL 22 V 0.32
|
27 |
+
ASN 23 N 0.18
|
28 |
+
GLY 24 G 0.48
|
29 |
+
HIS 25 H 0.95
|
30 |
+
LYS 26 K 0.88
|
31 |
+
PHE 27 F 0.13
|
32 |
+
SER 28 S 0.12
|
33 |
+
VAL 29 V 0.58
|
34 |
+
SER 30 S 0.19
|
35 |
+
GLY 31 G 0.09
|
36 |
+
GLU 32 E 0.17
|
37 |
+
GLY 33 G 0.60
|
38 |
+
GLU 34 E 0.92
|
39 |
+
GLY 35 G 0.48
|
40 |
+
ASP 36 D 0.35
|
41 |
+
ALA 37 A 0.72
|
42 |
+
THR 38 T 0.47
|
43 |
+
TYR 39 Y 0.11
|
44 |
+
GLY 40 G 0.57
|
45 |
+
LYS 41 K 0.86
|
46 |
+
LEU 42 L 0.42
|
47 |
+
THR 43 T 0.98
|
48 |
+
LEU 44 L 0.27
|
49 |
+
LYS 45 K 0.05
|
50 |
+
PHE 46 F 0.54
|
51 |
+
ILE 47 I 0.25
|
52 |
+
CYS 48 C 0.73
|
53 |
+
THR 49 T 0.44
|
54 |
+
THR 50 T 0.85
|
55 |
+
GLY 51 G 0.17
|
56 |
+
LYS 52 K 0.72
|
57 |
+
LEU 53 L 0.03
|
58 |
+
PRO 54 P 0.26
|
59 |
+
VAL 55 V 0.64
|
60 |
+
PRO 56 P 0.88
|
61 |
+
TRP 57 W 0.84
|
62 |
+
PRO 58 P 0.71
|
63 |
+
THR 59 T 0.41
|
64 |
+
LEU 60 L 0.18
|
65 |
+
VAL 61 V 0.32
|
66 |
+
THR 62 T 0.87
|
67 |
+
THR 63 T 0.87
|
68 |
+
PHE 64 F 1.00
|
69 |
+
VAL 68 V 0.50
|
70 |
+
GLN 69 Q 0.10
|
71 |
+
CYS 70 C 0.71
|
72 |
+
PHE 71 F 0.47
|
73 |
+
SER 72 S 0.46
|
74 |
+
ARG 73 R 0.99
|
75 |
+
TYR 74 Y 0.40
|
76 |
+
PRO 75 P 0.78
|
77 |
+
ASP 76 D 0.42
|
78 |
+
HIS 77 H 0.93
|
79 |
+
MET 78 M 0.47
|
80 |
+
LYS 79 K 0.51
|
81 |
+
GLN 80 Q 0.85
|
82 |
+
HIS 81 H 0.11
|
83 |
+
ASP 82 D 0.87
|
84 |
+
PHE 83 F 0.13
|
85 |
+
PHE 84 F 0.56
|
86 |
+
LYS 85 K 0.44
|
87 |
+
SER 86 S 0.44
|
88 |
+
ALA 87 A 0.20
|
89 |
+
MET 88 M 0.33
|
90 |
+
PRO 89 P 0.77
|
91 |
+
GLU 90 E 0.32
|
92 |
+
GLY 91 G 0.80
|
93 |
+
TYR 92 Y 0.52
|
94 |
+
VAL 93 V 0.46
|
95 |
+
GLN 94 Q 0.26
|
96 |
+
GLU 95 E 0.03
|
97 |
+
ARG 96 R 0.99
|
98 |
+
THR 97 T 0.72
|
99 |
+
ILE 98 I 0.38
|
100 |
+
PHE 99 F 0.63
|
101 |
+
PHE 100 F 0.03
|
102 |
+
LYS 101 K 0.10
|
103 |
+
ASP 102 D 0.52
|
104 |
+
ASP 103 D 0.41
|
105 |
+
GLY 104 G 0.91
|
106 |
+
ASN 105 N 0.17
|
107 |
+
TYR 106 Y 0.75
|
108 |
+
LYS 107 K 0.07
|
109 |
+
THR 108 T 0.78
|
110 |
+
ARG 109 R 0.21
|
111 |
+
ALA 110 A 0.93
|
112 |
+
GLU 111 E 0.34
|
113 |
+
VAL 112 V 0.06
|
114 |
+
LYS 113 K 0.92
|
115 |
+
PHE 114 F 0.43
|
116 |
+
GLU 115 E 0.22
|
117 |
+
GLY 116 G 0.67
|
118 |
+
ASP 117 D 0.54
|
119 |
+
THR 118 T 0.18
|
120 |
+
LEU 119 L 0.33
|
121 |
+
VAL 120 V 0.52
|
122 |
+
ASN 121 N 0.23
|
123 |
+
ARG 122 R 0.18
|
124 |
+
ILE 123 I 0.52
|
125 |
+
GLU 124 E 0.85
|
126 |
+
LEU 125 L 0.66
|
127 |
+
LYS 126 K 0.69
|
128 |
+
GLY 127 G 0.46
|
129 |
+
ILE 128 I 0.48
|
130 |
+
ASP 129 D 0.55
|
131 |
+
PHE 130 F 0.90
|
132 |
+
LYS 131 K 1.00
|
133 |
+
GLU 132 E 0.98
|
134 |
+
ASP 133 D 0.41
|
135 |
+
GLY 134 G 0.78
|
136 |
+
ASN 135 N 0.12
|
137 |
+
ILE 136 I 0.06
|
138 |
+
LEU 137 L 0.80
|
139 |
+
GLY 138 G 0.70
|
140 |
+
HIS 139 H 0.52
|
141 |
+
LYS 140 K 0.40
|
142 |
+
LEU 141 L 0.97
|
143 |
+
GLU 142 E 0.25
|
144 |
+
TYR 143 Y 0.53
|
145 |
+
ASN 144 N 0.26
|
146 |
+
TYR 145 Y 0.67
|
147 |
+
ASN 146 N 0.65
|
148 |
+
SER 147 S 0.91
|
149 |
+
HIS 148 H 0.82
|
150 |
+
ASN 149 N 0.93
|
151 |
+
VAL 150 V 0.67
|
152 |
+
TYR 151 Y 0.87
|
153 |
+
ILE 152 I 0.02
|
154 |
+
MET 153 M 0.37
|
155 |
+
ALA 154 A 0.50
|
156 |
+
ASP 155 D 0.89
|
157 |
+
LYS 156 K 1.00
|
158 |
+
GLN 157 Q 0.96
|
159 |
+
LYS 158 K 0.83
|
160 |
+
ASN 159 N 0.95
|
161 |
+
GLY 160 G 0.02
|
162 |
+
ILE 161 I 0.57
|
163 |
+
LYS 162 K 0.82
|
164 |
+
VAL 163 V 0.66
|
165 |
+
ASN 164 N 0.32
|
166 |
+
PHE 165 F 0.50
|
167 |
+
LYS 166 K 0.11
|
168 |
+
ILE 167 I 0.49
|
169 |
+
ARG 168 R 0.20
|
170 |
+
HIS 169 H 0.82
|
171 |
+
ASN 170 N 0.34
|
172 |
+
ILE 171 I 0.91
|
173 |
+
GLU 172 E 0.28
|
174 |
+
ASP 173 D 0.02
|
175 |
+
GLY 174 G 0.09
|
176 |
+
SER 175 S 0.44
|
177 |
+
VAL 176 V 0.87
|
178 |
+
GLN 177 Q 0.65
|
179 |
+
LEU 178 L 0.88
|
180 |
+
ALA 179 A 0.89
|
181 |
+
ASP 180 D 0.53
|
182 |
+
HIS 181 H 0.89
|
183 |
+
TYR 182 Y 0.44
|
184 |
+
GLN 183 Q 0.02
|
185 |
+
GLN 184 Q 0.91
|
186 |
+
ASN 185 N 0.57
|
187 |
+
THR 186 T 0.00
|
188 |
+
PRO 187 P 0.97
|
189 |
+
ILE 188 I 0.17
|
190 |
+
GLY 189 G 0.57
|
191 |
+
ASP 190 D 0.46
|
192 |
+
GLY 191 G 0.08
|
193 |
+
PRO 192 P 0.85
|
194 |
+
VAL 193 V 0.09
|
195 |
+
LEU 194 L 0.79
|
196 |
+
LEU 195 L 0.61
|
197 |
+
PRO 196 P 0.72
|
198 |
+
ASP 197 D 0.29
|
199 |
+
ASN 198 N 0.95
|
200 |
+
HIS 199 H 0.78
|
201 |
+
TYR 200 Y 0.02
|
202 |
+
LEU 201 L 0.55
|
203 |
+
SER 202 S 0.63
|
204 |
+
THR 203 T 0.38
|
205 |
+
GLN 204 Q 0.18
|
206 |
+
SER 205 S 0.48
|
207 |
+
ASN 206 N 0.19
|
208 |
+
LEU 207 L 0.71
|
209 |
+
SER 208 S 0.56
|
210 |
+
LYS 209 K 0.56
|
211 |
+
ASP 210 D 0.98
|
212 |
+
PRO 211 P 0.43
|
213 |
+
ASN 212 N 0.91
|
214 |
+
GLU 213 E 0.76
|
215 |
+
LYS 214 K 0.58
|
216 |
+
ARG 215 R 0.42
|
217 |
+
ASP 216 D 0.81
|
218 |
+
HIS 217 H 0.96
|
219 |
+
MET 218 M 0.26
|
220 |
+
VAL 219 V 0.01
|
221 |
+
LEU 220 L 0.27
|
222 |
+
LEU 221 L 0.26
|
223 |
+
GLU 222 E 0.92
|
224 |
+
PHE 223 F 0.84
|
225 |
+
VAL 224 V 0.72
|
226 |
+
THR 225 T 1.00
|
227 |
+
ALA 226 A 0.55
|
228 |
+
ALA 227 A 0.72
|
229 |
+
GLY 228 G 0.44
|
230 |
+
ILE 229 I 0.01
|
231 |
+
THR 230 T 0.98
|
232 |
+
ALA 1054 A 0.83
|
233 |
+
SER 1055 S 0.78
|
234 |
+
THR 1056 T 0.55
|
235 |
+
LYS 1057 K 0.40
|
236 |
+
LYS 1058 K 0.06
|
237 |
+
LEU 1059 L 0.82
|
238 |
+
SER 1060 S 0.59
|
239 |
+
GLU 1061 E 0.68
|
240 |
+
SER 1062 S 0.28
|
241 |
+
LEU 1063 L 0.79
|
242 |
+
LYS 1064 K 0.94
|
243 |
+
ARG 1065 R 0.32
|
244 |
+
ILE 1066 I 0.28
|
245 |
+
GLY 1067 G 0.94
|
246 |
+
ASP 1068 D 0.19
|
247 |
+
GLU 1069 E 0.76
|
248 |
+
LEU 1070 L 0.19
|
249 |
+
ASP 1071 D 0.14
|
250 |
+
SER 1072 S 0.04
|
251 |
+
ASN 1073 N 0.39
|
252 |
+
MET 1074 M 0.50
|
253 |
+
GLU 1075 E 0.92
|
254 |
+
LEU 1076 L 0.81
|
255 |
+
GLN 1077 Q 0.04
|
256 |
+
ARG 1078 R 0.97
|
257 |
+
MET 1079 M 0.20
|
258 |
+
ILE 1080 I 0.90
|
259 |
+
ALA 1081 A 0.43
|
260 |
+
ALA 1082 A 0.93
|
261 |
+
VAL 1083 V 0.28
|
262 |
+
ASP 1084 D 0.29
|
263 |
+
THR 1085 T 0.83
|
264 |
+
ASP 1086 D 0.79
|
265 |
+
SER 1087 S 0.39
|
266 |
+
PRO 1088 P 0.85
|
267 |
+
ARG 1089 R 0.41
|
268 |
+
GLU 1090 E 0.08
|
269 |
+
VAL 1091 V 0.10
|
270 |
+
PHE 1092 F 0.15
|
271 |
+
PHE 1093 F 0.10
|
272 |
+
ARG 1094 R 0.59
|
273 |
+
VAL 1095 V 0.69
|
274 |
+
ALA 1096 A 0.50
|
275 |
+
ALA 1097 A 0.86
|
276 |
+
ASP 1098 D 0.77
|
277 |
+
MET 1099 M 0.60
|
278 |
+
PHE 1100 F 0.13
|
279 |
+
SER 1101 S 0.22
|
280 |
+
ASP 1102 D 0.29
|
281 |
+
GLY 1103 G 0.22
|
282 |
+
ASN 1104 N 0.01
|
283 |
+
PHE 1105 F 0.24
|
284 |
+
ASN 1106 N 0.48
|
285 |
+
TRP 1107 W 0.45
|
286 |
+
GLY 1108 G 0.52
|
287 |
+
ARG 1109 R 0.86
|
288 |
+
VAL 1110 V 0.68
|
289 |
+
VAL 1111 V 0.96
|
290 |
+
ALA 1112 A 0.01
|
291 |
+
LEU 1113 L 0.88
|
292 |
+
PHE 1114 F 0.66
|
293 |
+
TYR 1115 Y 0.11
|
294 |
+
PHE 1116 F 0.62
|
295 |
+
ALA 1117 A 0.62
|
296 |
+
SER 1118 S 0.26
|
297 |
+
LYS 1119 K 0.58
|
298 |
+
LEU 1120 L 0.18
|
299 |
+
VAL 1121 V 0.85
|
300 |
+
LEU 1122 L 0.27
|
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
from Bio.PDB import PDBParser
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
import os
|
6 |
from gradio_molecule3d import Molecule3D
|
@@ -25,6 +28,8 @@ from datasets import Dataset
|
|
25 |
|
26 |
from scipy.special import expit
|
27 |
|
|
|
|
|
28 |
# Load model and move to device
|
29 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
30 |
max_length = 1500
|
@@ -37,119 +42,250 @@ def normalize_scores(scores):
|
|
37 |
min_score = np.min(scores)
|
38 |
max_score = np.max(scores)
|
39 |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
40 |
-
|
41 |
def read_mol(pdb_path):
|
42 |
"""Read PDB file and return its content as a string"""
|
43 |
with open(pdb_path, 'r') as f:
|
44 |
return f.read()
|
45 |
|
46 |
-
def
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
return
|
54 |
else:
|
55 |
return None
|
56 |
|
57 |
-
def
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if not pdb_path:
|
60 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
structure = parser.get_structure('protein', pdb_path)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
chain = structure[0][segment]
|
67 |
except KeyError:
|
68 |
return "Invalid Chain ID", None, None
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',
|
74 |
-
'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',
|
75 |
-
'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',
|
76 |
-
'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'
|
77 |
-
}
|
78 |
-
|
79 |
-
# Exclude non-amino acid residues
|
80 |
-
sequence = "".join(
|
81 |
-
aa_dict[residue.get_resname().strip()]
|
82 |
-
for residue in chain
|
83 |
-
if residue.get_resname().strip() in aa_dict
|
84 |
-
)
|
85 |
-
sequence2 = [
|
86 |
-
(res.id[1], res) for res in chain
|
87 |
-
if res.get_resname().strip() in aa_dict
|
88 |
-
]
|
89 |
|
90 |
# Prepare input for model prediction
|
91 |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
92 |
with torch.no_grad():
|
93 |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
94 |
-
|
95 |
# Calculate scores and normalize them
|
96 |
scores = expit(outputs[:, 1] - outputs[:, 0])
|
97 |
normalized_scores = normalize_scores(scores)
|
98 |
-
|
99 |
-
# Zip residues with scores to track the residue ID and score
|
100 |
-
residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
#
|
108 |
prediction_file = f"{pdb_id}_predictions.txt"
|
109 |
with open(prediction_file, "w") as f:
|
110 |
f.write(result_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
return result_str
|
|
|
113 |
|
114 |
def molecule(input_pdb, residue_scores=None, segment='A'):
|
115 |
mol = read_mol(input_pdb) # Read PDB file content
|
116 |
-
|
117 |
# Prepare high-scoring residues script if scores are provided
|
118 |
high_score_script = ""
|
119 |
if residue_scores is not None:
|
120 |
-
#
|
121 |
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
|
122 |
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
|
123 |
|
124 |
high_score_script = """
|
125 |
-
//
|
126 |
-
viewer.
|
127 |
-
|
128 |
-
|
129 |
-
viewer.getModel(0).setStyle(
|
130 |
{"chain": "%s"},
|
131 |
-
{
|
132 |
);
|
133 |
-
|
134 |
-
//
|
135 |
-
let
|
136 |
-
|
137 |
-
|
|
|
138 |
{"stick": {"color": "red"}}
|
139 |
);
|
140 |
|
141 |
-
//
|
142 |
-
let
|
143 |
-
|
144 |
-
|
|
|
145 |
{"stick": {"color": "orange"}}
|
146 |
);
|
147 |
-
""" % (
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
152 |
|
|
|
153 |
html_content = f"""
|
154 |
<!DOCTYPE html>
|
155 |
<html>
|
@@ -173,13 +309,6 @@ def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
173 |
let element = $("#container");
|
174 |
let config = {{ backgroundColor: "white" }};
|
175 |
let viewer = $3Dmol.createViewer(element, config);
|
176 |
-
viewer.addModel(pdb, "pdb");
|
177 |
-
|
178 |
-
// Reset all styles and show only selected chain
|
179 |
-
viewer.getModel(0).setStyle(
|
180 |
-
{{"chain": "{segment}"}},
|
181 |
-
{{ cartoon: {{ colorscheme:"whiteCarbon" }} }}
|
182 |
-
);
|
183 |
|
184 |
{high_score_script}
|
185 |
|
@@ -221,39 +350,50 @@ def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
221 |
# Return the HTML content within an iframe safely encoded for special characters
|
222 |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>'
|
223 |
|
224 |
-
reps = [
|
225 |
-
{
|
226 |
-
"model": 0,
|
227 |
-
"style": "cartoon",
|
228 |
-
"color": "whiteCarbon",
|
229 |
-
"residue_range": "",
|
230 |
-
"around": 0,
|
231 |
-
"byres": False,
|
232 |
-
}
|
233 |
-
]
|
234 |
|
235 |
# Gradio UI
|
236 |
with gr.Blocks() as demo:
|
237 |
gr.Markdown("# Protein Binding Site Prediction")
|
|
|
238 |
with gr.Row():
|
239 |
-
pdb_input = gr.Textbox(value="
|
240 |
visualize_btn = gr.Button("Visualize Structure")
|
241 |
|
242 |
-
molecule_output2 = Molecule3D(label="Protein Structure", reps=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
with gr.Row():
|
245 |
-
#pdb_input = gr.Textbox(value="2IWI", label="PDB ID", placeholder="Enter PDB ID here...")
|
246 |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
|
247 |
prediction_btn = gr.Button("Predict Binding Site")
|
248 |
|
|
|
249 |
molecule_output = gr.HTML(label="Protein Structure")
|
250 |
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
251 |
-
download_output = gr.File(label="Download
|
252 |
-
|
253 |
-
visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)
|
254 |
-
|
255 |
-
prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
gr.Markdown("## Examples")
|
258 |
gr.Examples(
|
259 |
examples=[
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
from Bio.PDB import PDBParser, MMCIFParser, PDBIO
|
4 |
+
from Bio.PDB.Polypeptide import is_aa
|
5 |
+
from Bio.SeqUtils import seq1
|
6 |
+
from typing import Optional, Tuple
|
7 |
import numpy as np
|
8 |
import os
|
9 |
from gradio_molecule3d import Molecule3D
|
|
|
28 |
|
29 |
from scipy.special import expit
|
30 |
|
31 |
+
|
32 |
+
|
33 |
# Load model and move to device
|
34 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
35 |
max_length = 1500
|
|
|
42 |
min_score = np.min(scores)
|
43 |
max_score = np.max(scores)
|
44 |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
45 |
+
|
46 |
def read_mol(pdb_path):
|
47 |
"""Read PDB file and return its content as a string"""
|
48 |
with open(pdb_path, 'r') as f:
|
49 |
return f.read()
|
50 |
|
51 |
+
def fetch_structure(pdb_id: str, output_dir: str = ".") -> Optional[str]:
|
52 |
+
"""
|
53 |
+
Fetch the structure file for a given PDB ID. Prioritizes CIF files.
|
54 |
+
If a structure file already exists locally, it uses that.
|
55 |
+
"""
|
56 |
+
file_path = download_structure(pdb_id, output_dir)
|
57 |
+
if file_path:
|
58 |
+
return file_path
|
59 |
else:
|
60 |
return None
|
61 |
|
62 |
+
def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:
|
63 |
+
"""
|
64 |
+
Attempt to download the structure file in CIF or PDB format.
|
65 |
+
Returns the path to the downloaded file, or None if download fails.
|
66 |
+
"""
|
67 |
+
for ext in ['.cif', '.pdb']:
|
68 |
+
file_path = os.path.join(output_dir, f"{pdb_id}{ext}")
|
69 |
+
if os.path.exists(file_path):
|
70 |
+
return file_path
|
71 |
+
url = f"https://files.rcsb.org/download/{pdb_id}{ext}"
|
72 |
+
try:
|
73 |
+
response = requests.get(url, timeout=10)
|
74 |
+
if response.status_code == 200:
|
75 |
+
with open(file_path, 'wb') as f:
|
76 |
+
f.write(response.content)
|
77 |
+
return file_path
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Download error for {pdb_id}{ext}: {e}")
|
80 |
+
return None
|
81 |
+
|
82 |
+
def convert_cif_to_pdb(cif_path: str, output_dir: str = ".") -> str:
|
83 |
+
"""
|
84 |
+
Convert a CIF file to PDB format using BioPython and return the PDB file path.
|
85 |
+
"""
|
86 |
+
pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))
|
87 |
+
parser = MMCIFParser(QUIET=True)
|
88 |
+
structure = parser.get_structure('protein', cif_path)
|
89 |
+
io = PDBIO()
|
90 |
+
io.set_structure(structure)
|
91 |
+
io.save(pdb_path)
|
92 |
+
return pdb_path
|
93 |
+
|
94 |
+
def fetch_pdb(pdb_id):
|
95 |
+
pdb_path = fetch_structure(pdb_id)
|
96 |
if not pdb_path:
|
97 |
+
return None
|
98 |
+
_, ext = os.path.splitext(pdb_path)
|
99 |
+
if ext == '.cif':
|
100 |
+
pdb_path = convert_cif_to_pdb(pdb_path)
|
101 |
+
return pdb_path
|
102 |
+
|
103 |
+
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:
|
104 |
+
"""
|
105 |
+
Create a PDB file with only the specified chain and replace B-factor with prediction scores
|
106 |
+
"""
|
107 |
+
# Read the original PDB file
|
108 |
+
parser = PDBParser(QUIET=True)
|
109 |
+
structure = parser.get_structure('protein', input_pdb)
|
110 |
|
111 |
+
# Prepare a new structure with only the specified chain
|
112 |
+
new_structure = structure.copy()
|
113 |
+
for model in new_structure:
|
114 |
+
# Remove all chains except the specified one
|
115 |
+
chains_to_remove = [chain for chain in model if chain.id != chain_id]
|
116 |
+
for chain in chains_to_remove:
|
117 |
+
model.detach_child(chain.id)
|
118 |
+
|
119 |
+
# Create a modified PDB with scores in B-factor
|
120 |
+
scores_dict = {resi: score for resi, score in residue_scores}
|
121 |
+
for model in new_structure:
|
122 |
+
for chain in model:
|
123 |
+
for residue in chain:
|
124 |
+
if residue.id[1] in scores_dict:
|
125 |
+
for atom in residue:
|
126 |
+
atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range
|
127 |
+
|
128 |
+
# Save the modified structure
|
129 |
+
output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb"
|
130 |
+
io = PDBIO()
|
131 |
+
io.set_structure(new_structure)
|
132 |
+
io.save(output_pdb)
|
133 |
+
|
134 |
+
return output_pdb
|
135 |
+
|
136 |
+
def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):
|
137 |
+
"""
|
138 |
+
Calculate the geometric center of high-scoring residues
|
139 |
+
"""
|
140 |
+
parser = PDBParser(QUIET=True)
|
141 |
structure = parser.get_structure('protein', pdb_path)
|
142 |
|
143 |
+
# Collect coordinates of CA atoms from high-scoring residues
|
144 |
+
coords = []
|
145 |
+
for model in structure:
|
146 |
+
for chain in model:
|
147 |
+
if chain.id == chain_id:
|
148 |
+
for residue in chain:
|
149 |
+
if residue.id[1] in high_score_residues:
|
150 |
+
if 'CA' in residue: # Use alpha carbon as representative
|
151 |
+
ca_atom = residue['CA']
|
152 |
+
coords.append(ca_atom.coord)
|
153 |
+
|
154 |
+
# Calculate geometric center
|
155 |
+
if coords:
|
156 |
+
center = np.mean(coords, axis=0)
|
157 |
+
return center
|
158 |
+
return None
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
def process_pdb(pdb_id_or_file, segment):
|
163 |
+
# Determine if input is a PDB ID or file path
|
164 |
+
if pdb_id_or_file.endswith('.pdb'):
|
165 |
+
pdb_path = pdb_id_or_file
|
166 |
+
pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]
|
167 |
+
else:
|
168 |
+
pdb_id = pdb_id_or_file
|
169 |
+
pdb_path = fetch_pdb(pdb_id)
|
170 |
+
|
171 |
+
if not pdb_path:
|
172 |
+
return "Failed to fetch PDB file", None, None
|
173 |
+
|
174 |
+
# Determine the file format and choose the appropriate parser
|
175 |
+
_, ext = os.path.splitext(pdb_path)
|
176 |
+
parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)
|
177 |
+
|
178 |
+
try:
|
179 |
+
# Parse the structure file
|
180 |
+
structure = parser.get_structure('protein', pdb_path)
|
181 |
+
except Exception as e:
|
182 |
+
return f"Error parsing structure file: {e}", None, None
|
183 |
+
|
184 |
+
# Extract the specified chain
|
185 |
try:
|
186 |
chain = structure[0][segment]
|
187 |
except KeyError:
|
188 |
return "Invalid Chain ID", None, None
|
189 |
|
190 |
+
protein_residues = [res for res in chain if is_aa(res)]
|
191 |
+
sequence = "".join(seq1(res.resname) for res in protein_residues)
|
192 |
+
sequence_id = [res.id[1] for res in protein_residues]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
# Prepare input for model prediction
|
195 |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
196 |
with torch.no_grad():
|
197 |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
198 |
+
|
199 |
# Calculate scores and normalize them
|
200 |
scores = expit(outputs[:, 1] - outputs[:, 0])
|
201 |
normalized_scores = normalize_scores(scores)
|
|
|
|
|
|
|
202 |
|
203 |
+
# Zip residues with scores to track the residue ID and score
|
204 |
+
residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
|
205 |
+
|
206 |
+
# Identify high and mid scoring residues
|
207 |
+
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
|
208 |
+
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
|
209 |
+
|
210 |
+
# Calculate geometric center of high-scoring residues
|
211 |
+
geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)
|
212 |
+
pymol_selection = f"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}"
|
213 |
+
pymol_center_cmd = f"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}" if geo_center is not None else ""
|
214 |
+
|
215 |
+
# Generate the result string
|
216 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
217 |
+
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
|
218 |
+
result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n\n"
|
219 |
+
result_str += "\n".join([
|
220 |
+
f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
221 |
+
for i, res in enumerate(protein_residues)])
|
222 |
|
223 |
+
# Create prediction and scored PDB files
|
224 |
prediction_file = f"{pdb_id}_predictions.txt"
|
225 |
with open(prediction_file, "w") as f:
|
226 |
f.write(result_str)
|
227 |
+
|
228 |
+
# Create chain-specific PDB with scores in B-factor
|
229 |
+
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)
|
230 |
+
|
231 |
+
# Molecule visualization with updated script
|
232 |
+
mol_vis = molecule(pdb_path, residue_scores, segment)
|
233 |
+
|
234 |
+
# Construct PyMOL command suggestions
|
235 |
+
pymol_commands = f"""
|
236 |
+
PyMOL Visualization Commands:
|
237 |
+
1. Load PDB: load {os.path.abspath(pdb_path)}
|
238 |
+
2. Select high-scoring residues: {pymol_selection}
|
239 |
+
3. Highlight high-scoring residues: show sticks, high_score_residues
|
240 |
+
{pymol_center_cmd}
|
241 |
+
"""
|
242 |
|
243 |
+
return result_str + "\n\n" + pymol_commands, mol_vis, [prediction_file, scored_pdb]
|
244 |
+
|
245 |
|
246 |
def molecule(input_pdb, residue_scores=None, segment='A'):
|
247 |
mol = read_mol(input_pdb) # Read PDB file content
|
248 |
+
|
249 |
# Prepare high-scoring residues script if scores are provided
|
250 |
high_score_script = ""
|
251 |
if residue_scores is not None:
|
252 |
+
# Filter residues based on their scores
|
253 |
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
|
254 |
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
|
255 |
|
256 |
high_score_script = """
|
257 |
+
// Load the original model and apply white cartoon style
|
258 |
+
let chainModel = viewer.addModel(pdb, "pdb");
|
259 |
+
chainModel.setStyle({}, {});
|
260 |
+
chainModel.setStyle(
|
|
|
261 |
{"chain": "%s"},
|
262 |
+
{"cartoon": {"color": "white"}}
|
263 |
);
|
264 |
+
|
265 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
266 |
+
let highScoreModel = viewer.addModel(pdb, "pdb");
|
267 |
+
highScoreModel.setStyle({}, {});
|
268 |
+
highScoreModel.setStyle(
|
269 |
+
{"chain": "%s", "resi": [%s]},
|
270 |
{"stick": {"color": "red"}}
|
271 |
);
|
272 |
|
273 |
+
// Create a new model for medium-scoring residues and apply orange sticks style
|
274 |
+
let midScoreModel = viewer.addModel(pdb, "pdb");
|
275 |
+
midScoreModel.setStyle({}, {});
|
276 |
+
midScoreModel.setStyle(
|
277 |
+
{"chain": "%s", "resi": [%s]},
|
278 |
{"stick": {"color": "orange"}}
|
279 |
);
|
280 |
+
""" % (
|
281 |
+
segment,
|
282 |
+
segment,
|
283 |
+
", ".join(str(resi) for resi in high_score_residues),
|
284 |
+
segment,
|
285 |
+
", ".join(str(resi) for resi in mid_score_residues)
|
286 |
+
)
|
287 |
|
288 |
+
# Generate the full HTML content
|
289 |
html_content = f"""
|
290 |
<!DOCTYPE html>
|
291 |
<html>
|
|
|
309 |
let element = $("#container");
|
310 |
let config = {{ backgroundColor: "white" }};
|
311 |
let viewer = $3Dmol.createViewer(element, config);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
{high_score_script}
|
314 |
|
|
|
350 |
# Return the HTML content within an iframe safely encoded for special characters
|
351 |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>'
|
352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
# Gradio UI
|
355 |
with gr.Blocks() as demo:
|
356 |
gr.Markdown("# Protein Binding Site Prediction")
|
357 |
+
|
358 |
with gr.Row():
|
359 |
+
pdb_input = gr.Textbox(value="4BDU", label="PDB ID", placeholder="Enter PDB ID here...")
|
360 |
visualize_btn = gr.Button("Visualize Structure")
|
361 |
|
362 |
+
molecule_output2 = Molecule3D(label="Protein Structure", reps=[
|
363 |
+
{
|
364 |
+
"model": 0,
|
365 |
+
"style": "cartoon",
|
366 |
+
"color": "whiteCarbon",
|
367 |
+
"residue_range": "",
|
368 |
+
"around": 0,
|
369 |
+
"byres": False,
|
370 |
+
}
|
371 |
+
])
|
372 |
|
373 |
with gr.Row():
|
|
|
374 |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
|
375 |
prediction_btn = gr.Button("Predict Binding Site")
|
376 |
|
377 |
+
|
378 |
molecule_output = gr.HTML(label="Protein Structure")
|
379 |
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
380 |
+
download_output = gr.File(label="Download Files", file_count="multiple")
|
|
|
|
|
|
|
|
|
381 |
|
382 |
+
prediction_btn.click(
|
383 |
+
process_pdb,
|
384 |
+
inputs=[
|
385 |
+
pdb_input,
|
386 |
+
segment_input
|
387 |
+
],
|
388 |
+
outputs=[predictions_output, molecule_output, download_output]
|
389 |
+
)
|
390 |
+
|
391 |
+
visualize_btn.click(
|
392 |
+
fetch_pdb,
|
393 |
+
inputs=[pdb_input],
|
394 |
+
outputs=molecule_output2
|
395 |
+
)
|
396 |
+
|
397 |
gr.Markdown("## Examples")
|
398 |
gr.Examples(
|
399 |
examples=[
|
test3.ipynb
ADDED
@@ -0,0 +1,1599 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 18,
|
6 |
+
"id": "2b84eb4e-3f91-4a28-8e4f-322a34a9fb55",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"* Running on local URL: http://127.0.0.1:7877\n",
|
14 |
+
"* Running on public URL: https://a35567ec94eccaf8d1.gradio.live\n",
|
15 |
+
"\n",
|
16 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"data": {
|
21 |
+
"text/html": [
|
22 |
+
"<div><iframe src=\"https://a35567ec94eccaf8d1.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
23 |
+
],
|
24 |
+
"text/plain": [
|
25 |
+
"<IPython.core.display.HTML object>"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
"metadata": {},
|
29 |
+
"output_type": "display_data"
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"data": {
|
33 |
+
"text/plain": []
|
34 |
+
},
|
35 |
+
"execution_count": 18,
|
36 |
+
"metadata": {},
|
37 |
+
"output_type": "execute_result"
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"source": [
|
41 |
+
"from Bio.PDB import PDBParser, MMCIFParser, MMCIF2Dict, PDBIO\n",
|
42 |
+
"from Bio.PDB.Polypeptide import is_aa\n",
|
43 |
+
"from Bio.SeqUtils import seq1\n",
|
44 |
+
"import gradio as gr\n",
|
45 |
+
"import numpy as np\n",
|
46 |
+
"import os\n",
|
47 |
+
"import requests\n",
|
48 |
+
"from gradio_molecule3d import Molecule3D\n",
|
49 |
+
"from scipy.special import expit\n",
|
50 |
+
"from typing import Optional\n",
|
51 |
+
"\n",
|
52 |
+
"def normalize_scores(scores):\n",
|
53 |
+
" min_score = np.min(scores)\n",
|
54 |
+
" max_score = np.max(scores)\n",
|
55 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
56 |
+
"\n",
|
57 |
+
"def read_mol(pdb_path):\n",
|
58 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
59 |
+
" with open(pdb_path, 'r') as f:\n",
|
60 |
+
" return f.read()\n",
|
61 |
+
"\n",
|
62 |
+
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
|
63 |
+
" \"\"\"\n",
|
64 |
+
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
|
65 |
+
" If a structure file already exists locally, it uses that.\n",
|
66 |
+
" \"\"\"\n",
|
67 |
+
" file_path = download_structure(pdb_id, output_dir)\n",
|
68 |
+
" if file_path:\n",
|
69 |
+
" return file_path\n",
|
70 |
+
" else:\n",
|
71 |
+
" return None\n",
|
72 |
+
"\n",
|
73 |
+
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
|
74 |
+
" \"\"\"\n",
|
75 |
+
" Attempt to download the structure file in CIF or PDB format.\n",
|
76 |
+
" Returns the path to the downloaded file, or None if download fails.\n",
|
77 |
+
" \"\"\"\n",
|
78 |
+
" for ext in ['.cif', '.pdb']:\n",
|
79 |
+
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
|
80 |
+
" if os.path.exists(file_path):\n",
|
81 |
+
" return file_path\n",
|
82 |
+
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
|
83 |
+
" try:\n",
|
84 |
+
" response = requests.get(url, timeout=10)\n",
|
85 |
+
" if response.status_code == 200:\n",
|
86 |
+
" with open(file_path, 'wb') as f:\n",
|
87 |
+
" f.write(response.content)\n",
|
88 |
+
" return file_path\n",
|
89 |
+
" except Exception as e:\n",
|
90 |
+
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
|
91 |
+
" return None\n",
|
92 |
+
"\n",
|
93 |
+
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
|
94 |
+
" \"\"\"\n",
|
95 |
+
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
|
96 |
+
" \"\"\"\n",
|
97 |
+
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
|
98 |
+
" parser = MMCIFParser(QUIET=True)\n",
|
99 |
+
" structure = parser.get_structure('protein', cif_path)\n",
|
100 |
+
" io = PDBIO()\n",
|
101 |
+
" io.set_structure(structure)\n",
|
102 |
+
" io.save(pdb_path)\n",
|
103 |
+
" return pdb_path\n",
|
104 |
+
"\n",
|
105 |
+
"def fetch_pdb(pdb_id):\n",
|
106 |
+
" pdb_path = fetch_structure(pdb_id)\n",
|
107 |
+
" if not pdb_path:\n",
|
108 |
+
" return None\n",
|
109 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
110 |
+
" if ext == '.cif':\n",
|
111 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
112 |
+
" return pdb_path\n",
|
113 |
+
"\n",
|
114 |
+
"def process_pdb(pdb_id, segment):\n",
|
115 |
+
" # Fetch the PDB or CIF file\n",
|
116 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
117 |
+
" if not pdb_path:\n",
|
118 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
119 |
+
" \n",
|
120 |
+
" # Determine the file format and choose the appropriate parser\n",
|
121 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
122 |
+
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
|
123 |
+
" \n",
|
124 |
+
" try:\n",
|
125 |
+
" # Parse the structure file\n",
|
126 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
127 |
+
" except Exception as e:\n",
|
128 |
+
" return f\"Error parsing structure file: {e}\", None, None\n",
|
129 |
+
" \n",
|
130 |
+
" # Extract the specified chain\n",
|
131 |
+
" try:\n",
|
132 |
+
" chain = structure[0][segment]\n",
|
133 |
+
" except KeyError:\n",
|
134 |
+
" return \"Invalid Chain ID\", None, None\n",
|
135 |
+
" \n",
|
136 |
+
" protein_residues = [res for res in chain if is_aa(res)]\n",
|
137 |
+
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
|
138 |
+
" sequence_id = [res.id[1] for res in protein_residues]\n",
|
139 |
+
" \n",
|
140 |
+
" # Generate random scores for residues\n",
|
141 |
+
" scores = np.random.rand(len(sequence))\n",
|
142 |
+
" normalized_scores = normalize_scores(scores)\n",
|
143 |
+
" \n",
|
144 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
145 |
+
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
|
146 |
+
"\n",
|
147 |
+
" # Generate the result string\n",
|
148 |
+
" result_str = \"\\n\".join([\n",
|
149 |
+
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
150 |
+
" for i, res in enumerate(protein_residues)])\n",
|
151 |
+
" \n",
|
152 |
+
" # Save the predictions to a file\n",
|
153 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
154 |
+
" with open(prediction_file, \"w\") as f:\n",
|
155 |
+
" f.write(result_str)\n",
|
156 |
+
"\n",
|
157 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
158 |
+
" if ext == '.cif':\n",
|
159 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
160 |
+
"\n",
|
161 |
+
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
162 |
+
"\n",
|
163 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
164 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
165 |
+
" \n",
|
166 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
167 |
+
" high_score_script = \"\"\n",
|
168 |
+
" if residue_scores is not None:\n",
|
169 |
+
" # Sort residues based on their scores\n",
|
170 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
171 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
172 |
+
" \n",
|
173 |
+
" high_score_script = \"\"\"\n",
|
174 |
+
" // Reset all styles first\n",
|
175 |
+
" viewer.getModel(0).setStyle({}, {});\n",
|
176 |
+
" \n",
|
177 |
+
" // Show only the selected chain\n",
|
178 |
+
" viewer.getModel(0).setStyle(\n",
|
179 |
+
" {\"chain\": \"%s\"}, \n",
|
180 |
+
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
181 |
+
" );\n",
|
182 |
+
" \n",
|
183 |
+
" // Highlight high-scoring residues only for the selected chain\n",
|
184 |
+
" let highScoreResidues = [%s];\n",
|
185 |
+
" viewer.getModel(0).setStyle(\n",
|
186 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
187 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
188 |
+
" );\n",
|
189 |
+
"\n",
|
190 |
+
" // Highlight medium-scoring residues only for the selected chain\n",
|
191 |
+
" let midScoreResidues = [%s];\n",
|
192 |
+
" viewer.getModel(0).setStyle(\n",
|
193 |
+
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
194 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
195 |
+
" );\n",
|
196 |
+
" \"\"\" % (segment, \n",
|
197 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
198 |
+
" segment,\n",
|
199 |
+
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
200 |
+
" segment)\n",
|
201 |
+
" \n",
|
202 |
+
" html_content = f\"\"\"\n",
|
203 |
+
" <!DOCTYPE html>\n",
|
204 |
+
" <html>\n",
|
205 |
+
" <head> \n",
|
206 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
207 |
+
" <style>\n",
|
208 |
+
" .mol-container {{\n",
|
209 |
+
" width: 100%;\n",
|
210 |
+
" height: 700px;\n",
|
211 |
+
" position: relative;\n",
|
212 |
+
" }}\n",
|
213 |
+
" </style>\n",
|
214 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
215 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
216 |
+
" </head>\n",
|
217 |
+
" <body>\n",
|
218 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
219 |
+
" <script>\n",
|
220 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
221 |
+
" $(document).ready(function () {{\n",
|
222 |
+
" let element = $(\"#container\");\n",
|
223 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
224 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
225 |
+
" viewer.addModel(pdb, \"pdb\");\n",
|
226 |
+
" \n",
|
227 |
+
" // Reset all styles and show only selected chain\n",
|
228 |
+
" viewer.getModel(0).setStyle(\n",
|
229 |
+
" {{\"chain\": \"{segment}\"}}, \n",
|
230 |
+
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
231 |
+
" );\n",
|
232 |
+
" \n",
|
233 |
+
" {high_score_script}\n",
|
234 |
+
" \n",
|
235 |
+
" // Add hover functionality\n",
|
236 |
+
" viewer.setHoverable(\n",
|
237 |
+
" {{}}, \n",
|
238 |
+
" true, \n",
|
239 |
+
" function(atom, viewer, event, container) {{\n",
|
240 |
+
" if (!atom.label) {{\n",
|
241 |
+
" atom.label = viewer.addLabel(\n",
|
242 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
243 |
+
" {{\n",
|
244 |
+
" position: atom, \n",
|
245 |
+
" backgroundColor: 'mintcream', \n",
|
246 |
+
" fontColor: 'black',\n",
|
247 |
+
" fontSize: 12,\n",
|
248 |
+
" padding: 2\n",
|
249 |
+
" }}\n",
|
250 |
+
" );\n",
|
251 |
+
" }}\n",
|
252 |
+
" }},\n",
|
253 |
+
" function(atom, viewer) {{\n",
|
254 |
+
" if (atom.label) {{\n",
|
255 |
+
" viewer.removeLabel(atom.label);\n",
|
256 |
+
" delete atom.label;\n",
|
257 |
+
" }}\n",
|
258 |
+
" }}\n",
|
259 |
+
" );\n",
|
260 |
+
" \n",
|
261 |
+
" viewer.zoomTo();\n",
|
262 |
+
" viewer.render();\n",
|
263 |
+
" viewer.zoom(0.8, 2000);\n",
|
264 |
+
" }});\n",
|
265 |
+
" </script>\n",
|
266 |
+
" </body>\n",
|
267 |
+
" </html>\n",
|
268 |
+
" \"\"\"\n",
|
269 |
+
" \n",
|
270 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
271 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
272 |
+
"\n",
|
273 |
+
"reps = [\n",
|
274 |
+
" {\n",
|
275 |
+
" \"model\": 0,\n",
|
276 |
+
" \"style\": \"cartoon\",\n",
|
277 |
+
" \"color\": \"whiteCarbon\",\n",
|
278 |
+
" \"residue_range\": \"\",\n",
|
279 |
+
" \"around\": 0,\n",
|
280 |
+
" \"byres\": False,\n",
|
281 |
+
" }\n",
|
282 |
+
"]\n",
|
283 |
+
"\n",
|
284 |
+
"# Gradio UI\n",
|
285 |
+
"with gr.Blocks() as demo:\n",
|
286 |
+
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
287 |
+
" with gr.Row():\n",
|
288 |
+
" pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
289 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
290 |
+
"\n",
|
291 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
292 |
+
"\n",
|
293 |
+
" with gr.Row():\n",
|
294 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
295 |
+
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
296 |
+
"\n",
|
297 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
298 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
299 |
+
" download_output = gr.File(label=\"Download Predictions\")\n",
|
300 |
+
" \n",
|
301 |
+
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
302 |
+
" \n",
|
303 |
+
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
304 |
+
" \n",
|
305 |
+
" gr.Markdown(\"## Examples\")\n",
|
306 |
+
" gr.Examples(\n",
|
307 |
+
" examples=[\n",
|
308 |
+
" [\"7RPZ\", \"A\"],\n",
|
309 |
+
" [\"2IWI\", \"B\"],\n",
|
310 |
+
" [\"2F6V\", \"A\"]\n",
|
311 |
+
" ],\n",
|
312 |
+
" inputs=[pdb_input, segment_input],\n",
|
313 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
314 |
+
" )\n",
|
315 |
+
"\n",
|
316 |
+
"demo.launch(share=True)"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": 20,
|
322 |
+
"id": "a2f1ca04-7a27-4e4f-b44d-39b20c5d034a",
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [
|
325 |
+
{
|
326 |
+
"name": "stdout",
|
327 |
+
"output_type": "stream",
|
328 |
+
"text": [
|
329 |
+
"* Running on local URL: http://127.0.0.1:7878\n",
|
330 |
+
"* Running on public URL: https://fbfb00e893a2d7c6ae.gradio.live\n",
|
331 |
+
"\n",
|
332 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"data": {
|
337 |
+
"text/html": [
|
338 |
+
"<div><iframe src=\"https://fbfb00e893a2d7c6ae.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
339 |
+
],
|
340 |
+
"text/plain": [
|
341 |
+
"<IPython.core.display.HTML object>"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
"metadata": {},
|
345 |
+
"output_type": "display_data"
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"data": {
|
349 |
+
"text/plain": []
|
350 |
+
},
|
351 |
+
"execution_count": 20,
|
352 |
+
"metadata": {},
|
353 |
+
"output_type": "execute_result"
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"source": [
|
357 |
+
"import os\n",
|
358 |
+
"from datetime import datetime\n",
|
359 |
+
"import gradio as gr\n",
|
360 |
+
"import numpy as np\n",
|
361 |
+
"import requests\n",
|
362 |
+
"from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
|
363 |
+
"from Bio.PDB.Polypeptide import is_aa\n",
|
364 |
+
"from Bio.SeqUtils import seq1\n",
|
365 |
+
"from gradio_molecule3d import Molecule3D\n",
|
366 |
+
"from typing import Optional, Tuple\n",
|
367 |
+
"\n",
|
368 |
+
"def normalize_scores(scores):\n",
|
369 |
+
" min_score = np.min(scores)\n",
|
370 |
+
" max_score = np.max(scores)\n",
|
371 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
372 |
+
"\n",
|
373 |
+
"def read_mol(pdb_path):\n",
|
374 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
375 |
+
" with open(pdb_path, 'r') as f:\n",
|
376 |
+
" return f.read()\n",
|
377 |
+
"\n",
|
378 |
+
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
|
379 |
+
" \"\"\"\n",
|
380 |
+
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
|
381 |
+
" If a structure file already exists locally, it uses that.\n",
|
382 |
+
" \"\"\"\n",
|
383 |
+
" file_path = download_structure(pdb_id, output_dir)\n",
|
384 |
+
" if file_path:\n",
|
385 |
+
" return file_path\n",
|
386 |
+
" else:\n",
|
387 |
+
" return None\n",
|
388 |
+
"\n",
|
389 |
+
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
|
390 |
+
" \"\"\"\n",
|
391 |
+
" Attempt to download the structure file in CIF or PDB format.\n",
|
392 |
+
" Returns the path to the downloaded file, or None if download fails.\n",
|
393 |
+
" \"\"\"\n",
|
394 |
+
" for ext in ['.cif', '.pdb']:\n",
|
395 |
+
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
|
396 |
+
" if os.path.exists(file_path):\n",
|
397 |
+
" return file_path\n",
|
398 |
+
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
|
399 |
+
" try:\n",
|
400 |
+
" response = requests.get(url, timeout=10)\n",
|
401 |
+
" if response.status_code == 200:\n",
|
402 |
+
" with open(file_path, 'wb') as f:\n",
|
403 |
+
" f.write(response.content)\n",
|
404 |
+
" return file_path\n",
|
405 |
+
" except Exception as e:\n",
|
406 |
+
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
|
407 |
+
" return None\n",
|
408 |
+
"\n",
|
409 |
+
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
|
410 |
+
" \"\"\"\n",
|
411 |
+
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
|
412 |
+
" \"\"\"\n",
|
413 |
+
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
|
414 |
+
" parser = MMCIFParser(QUIET=True)\n",
|
415 |
+
" structure = parser.get_structure('protein', cif_path)\n",
|
416 |
+
" io = PDBIO()\n",
|
417 |
+
" io.set_structure(structure)\n",
|
418 |
+
" io.save(pdb_path)\n",
|
419 |
+
" return pdb_path\n",
|
420 |
+
"\n",
|
421 |
+
"def fetch_pdb(pdb_id):\n",
|
422 |
+
" pdb_path = fetch_structure(pdb_id)\n",
|
423 |
+
" if not pdb_path:\n",
|
424 |
+
" return None\n",
|
425 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
426 |
+
" if ext == '.cif':\n",
|
427 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
428 |
+
" return pdb_path\n",
|
429 |
+
"\n",
|
430 |
+
"def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:\n",
|
431 |
+
" \"\"\"\n",
|
432 |
+
" Create a PDB file with only the specified chain and replace B-factor with prediction scores\n",
|
433 |
+
" \"\"\"\n",
|
434 |
+
" # Read the original PDB file\n",
|
435 |
+
" parser = PDBParser(QUIET=True)\n",
|
436 |
+
" structure = parser.get_structure('protein', input_pdb)\n",
|
437 |
+
" \n",
|
438 |
+
" # Prepare a new structure with only the specified chain\n",
|
439 |
+
" new_structure = structure.copy()\n",
|
440 |
+
" for model in new_structure:\n",
|
441 |
+
" # Remove all chains except the specified one\n",
|
442 |
+
" chains_to_remove = [chain for chain in model if chain.id != chain_id]\n",
|
443 |
+
" for chain in chains_to_remove:\n",
|
444 |
+
" model.detach_child(chain.id)\n",
|
445 |
+
" \n",
|
446 |
+
" # Create a modified PDB with scores in B-factor\n",
|
447 |
+
" scores_dict = {resi: score for resi, score in residue_scores}\n",
|
448 |
+
" for model in new_structure:\n",
|
449 |
+
" for chain in model:\n",
|
450 |
+
" for residue in chain:\n",
|
451 |
+
" if residue.id[1] in scores_dict:\n",
|
452 |
+
" for atom in residue:\n",
|
453 |
+
" atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range\n",
|
454 |
+
" \n",
|
455 |
+
" # Save the modified structure\n",
|
456 |
+
" output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
|
457 |
+
" io = PDBIO()\n",
|
458 |
+
" io.set_structure(new_structure)\n",
|
459 |
+
" io.save(output_pdb)\n",
|
460 |
+
" \n",
|
461 |
+
" return output_pdb\n",
|
462 |
+
"\n",
|
463 |
+
"def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
|
464 |
+
" \"\"\"\n",
|
465 |
+
" Calculate the geometric center of high-scoring residues\n",
|
466 |
+
" \"\"\"\n",
|
467 |
+
" parser = PDBParser(QUIET=True)\n",
|
468 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
469 |
+
" \n",
|
470 |
+
" # Collect coordinates of CA atoms from high-scoring residues\n",
|
471 |
+
" coords = []\n",
|
472 |
+
" for model in structure:\n",
|
473 |
+
" for chain in model:\n",
|
474 |
+
" if chain.id == chain_id:\n",
|
475 |
+
" for residue in chain:\n",
|
476 |
+
" if residue.id[1] in high_score_residues:\n",
|
477 |
+
" if 'CA' in residue: # Use alpha carbon as representative\n",
|
478 |
+
" ca_atom = residue['CA']\n",
|
479 |
+
" coords.append(ca_atom.coord)\n",
|
480 |
+
" \n",
|
481 |
+
" # Calculate geometric center\n",
|
482 |
+
" if coords:\n",
|
483 |
+
" center = np.mean(coords, axis=0)\n",
|
484 |
+
" return center\n",
|
485 |
+
" return None\n",
|
486 |
+
"\n",
|
487 |
+
"def process_pdb(pdb_id_or_file, segment):\n",
|
488 |
+
" # Determine if input is a PDB ID or file path\n",
|
489 |
+
" if pdb_id_or_file.endswith('.pdb'):\n",
|
490 |
+
" pdb_path = pdb_id_or_file\n",
|
491 |
+
" pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
|
492 |
+
" else:\n",
|
493 |
+
" pdb_id = pdb_id_or_file\n",
|
494 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
495 |
+
" \n",
|
496 |
+
" if not pdb_path:\n",
|
497 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
498 |
+
" \n",
|
499 |
+
" # Determine the file format and choose the appropriate parser\n",
|
500 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
501 |
+
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
|
502 |
+
" \n",
|
503 |
+
" try:\n",
|
504 |
+
" # Parse the structure file\n",
|
505 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
506 |
+
" except Exception as e:\n",
|
507 |
+
" return f\"Error parsing structure file: {e}\", None, None\n",
|
508 |
+
" \n",
|
509 |
+
" # Extract the specified chain\n",
|
510 |
+
" try:\n",
|
511 |
+
" chain = structure[0][segment]\n",
|
512 |
+
" except KeyError:\n",
|
513 |
+
" return \"Invalid Chain ID\", None, None\n",
|
514 |
+
" \n",
|
515 |
+
" protein_residues = [res for res in chain if is_aa(res)]\n",
|
516 |
+
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
|
517 |
+
" sequence_id = [res.id[1] for res in protein_residues]\n",
|
518 |
+
" \n",
|
519 |
+
" # Generate random scores for residues\n",
|
520 |
+
" scores = np.random.rand(len(sequence))\n",
|
521 |
+
" normalized_scores = normalize_scores(scores)\n",
|
522 |
+
" \n",
|
523 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
524 |
+
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
|
525 |
+
"\n",
|
526 |
+
" # Identify high and mid scoring residues\n",
|
527 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
528 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
529 |
+
"\n",
|
530 |
+
" # Calculate geometric center of high-scoring residues\n",
|
531 |
+
" geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
|
532 |
+
" pymol_selection = f\"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\"\n",
|
533 |
+
" pymol_center_cmd = f\"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\" if geo_center is not None else \"\"\n",
|
534 |
+
"\n",
|
535 |
+
" # Generate the result string\n",
|
536 |
+
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
537 |
+
" result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
|
538 |
+
" result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
|
539 |
+
" result_str += \"\\n\".join([\n",
|
540 |
+
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
541 |
+
" for i, res in enumerate(protein_residues)])\n",
|
542 |
+
" \n",
|
543 |
+
" # Create prediction and scored PDB files\n",
|
544 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
545 |
+
" with open(prediction_file, \"w\") as f:\n",
|
546 |
+
" f.write(result_str)\n",
|
547 |
+
"\n",
|
548 |
+
" # Create chain-specific PDB with scores in B-factor\n",
|
549 |
+
" scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)\n",
|
550 |
+
"\n",
|
551 |
+
" # Molecule visualization with updated script\n",
|
552 |
+
" mol_vis = molecule(pdb_path, residue_scores, segment)\n",
|
553 |
+
"\n",
|
554 |
+
" # Construct PyMOL command suggestions\n",
|
555 |
+
" pymol_commands = f\"\"\"\n",
|
556 |
+
"PyMOL Visualization Commands:\n",
|
557 |
+
"1. Load PDB: load {os.path.abspath(pdb_path)}\n",
|
558 |
+
"2. Select high-scoring residues: {pymol_selection}\n",
|
559 |
+
"3. Highlight high-scoring residues: show sticks, high_score_residues\n",
|
560 |
+
"{pymol_center_cmd}\n",
|
561 |
+
"\"\"\"\n",
|
562 |
+
" \n",
|
563 |
+
" return result_str + \"\\n\\n\" + pymol_commands, mol_vis, [prediction_file, scored_pdb]\n",
|
564 |
+
"\n",
|
565 |
+
"# molecule() function remains the same as in the previous script, \n",
|
566 |
+
"# but modify the visualization script to ensure cartoon is below stick representations\n",
|
567 |
+
"\n",
|
568 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
569 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
570 |
+
" \n",
|
571 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
572 |
+
" high_score_script = \"\"\n",
|
573 |
+
" if residue_scores is not None:\n",
|
574 |
+
" # Sort residues based on their scores\n",
|
575 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
576 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
577 |
+
" \n",
|
578 |
+
" high_score_script = \"\"\"\n",
|
579 |
+
" // Reset all styles first\n",
|
580 |
+
" viewer.getModel(0).setStyle({}, {});\n",
|
581 |
+
" \n",
|
582 |
+
" // First, set background cartoon style for the entire chain (underneath)\n",
|
583 |
+
" viewer.getModel(0).setStyle(\n",
|
584 |
+
" {\"chain\": \"%s\"}, \n",
|
585 |
+
" { cartoon: {colorscheme:\"whiteCarbon\", opacity:0.7} }\n",
|
586 |
+
" );\n",
|
587 |
+
" \n",
|
588 |
+
" // Highlight high-scoring residues with sticks on top\n",
|
589 |
+
" let highScoreResidues = [%s];\n",
|
590 |
+
" viewer.getModel(0).setStyle(\n",
|
591 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
592 |
+
" {\"stick\": {\"color\": \"red\", \"opacity\": 1}}\n",
|
593 |
+
" );\n",
|
594 |
+
"\n",
|
595 |
+
" // Highlight medium-scoring residues\n",
|
596 |
+
" let midScoreResidues = [%s];\n",
|
597 |
+
" viewer.getModel(0).setStyle(\n",
|
598 |
+
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
599 |
+
" {\"stick\": {\"color\": \"orange\", \"opacity\": 0.8}}\n",
|
600 |
+
" );\n",
|
601 |
+
" \"\"\" % (segment, \n",
|
602 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
603 |
+
" segment,\n",
|
604 |
+
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
605 |
+
" segment)\n",
|
606 |
+
" \n",
|
607 |
+
" # Rest of the molecule() function remains the same as in the previous script\n",
|
608 |
+
" \n",
|
609 |
+
" html_content = f\"\"\"\n",
|
610 |
+
" <!DOCTYPE html>\n",
|
611 |
+
" <html>\n",
|
612 |
+
" <head> \n",
|
613 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
614 |
+
" <style>\n",
|
615 |
+
" .mol-container {{\n",
|
616 |
+
" width: 100%;\n",
|
617 |
+
" height: 700px;\n",
|
618 |
+
" position: relative;\n",
|
619 |
+
" }}\n",
|
620 |
+
" </style>\n",
|
621 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
622 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
623 |
+
" </head>\n",
|
624 |
+
" <body>\n",
|
625 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
626 |
+
" <script>\n",
|
627 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
628 |
+
" $(document).ready(function () {{\n",
|
629 |
+
" let element = $(\"#container\");\n",
|
630 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
631 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
632 |
+
" viewer.addModel(pdb, \"pdb\");\n",
|
633 |
+
" \n",
|
634 |
+
" {high_score_script}\n",
|
635 |
+
" \n",
|
636 |
+
" // Add hover functionality (unchanged from before)\n",
|
637 |
+
" viewer.setHoverable(\n",
|
638 |
+
" {{}}, \n",
|
639 |
+
" true, \n",
|
640 |
+
" function(atom, viewer, event, container) {{\n",
|
641 |
+
" if (!atom.label) {{\n",
|
642 |
+
" atom.label = viewer.addLabel(\n",
|
643 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
644 |
+
" {{\n",
|
645 |
+
" position: atom, \n",
|
646 |
+
" backgroundColor: 'mintcream', \n",
|
647 |
+
" fontColor: 'black',\n",
|
648 |
+
" fontSize: 12,\n",
|
649 |
+
" padding: 2\n",
|
650 |
+
" }}\n",
|
651 |
+
" );\n",
|
652 |
+
" }}\n",
|
653 |
+
" }},\n",
|
654 |
+
" function(atom, viewer) {{\n",
|
655 |
+
" if (atom.label) {{\n",
|
656 |
+
" viewer.removeLabel(atom.label);\n",
|
657 |
+
" delete atom.label;\n",
|
658 |
+
" }}\n",
|
659 |
+
" }}\n",
|
660 |
+
" );\n",
|
661 |
+
" \n",
|
662 |
+
" viewer.zoomTo();\n",
|
663 |
+
" viewer.render();\n",
|
664 |
+
" viewer.zoom(0.8, 2000);\n",
|
665 |
+
" }});\n",
|
666 |
+
" </script>\n",
|
667 |
+
" </body>\n",
|
668 |
+
" </html>\n",
|
669 |
+
" \"\"\"\n",
|
670 |
+
" \n",
|
671 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
672 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
673 |
+
"\n",
|
674 |
+
"# Gradio UI\n",
|
675 |
+
"with gr.Blocks() as demo:\n",
|
676 |
+
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
677 |
+
" \n",
|
678 |
+
" with gr.Row():\n",
|
679 |
+
" pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
680 |
+
" file_input = gr.File(label=\"Or Upload PDB File\", file_types=['.pdb'], type=\"filepath\")\n",
|
681 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
682 |
+
"\n",
|
683 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
|
684 |
+
" {\n",
|
685 |
+
" \"model\": 0,\n",
|
686 |
+
" \"style\": \"cartoon\",\n",
|
687 |
+
" \"color\": \"whiteCarbon\",\n",
|
688 |
+
" \"residue_range\": \"\",\n",
|
689 |
+
" \"around\": 0,\n",
|
690 |
+
" \"byres\": False,\n",
|
691 |
+
" }\n",
|
692 |
+
" ])\n",
|
693 |
+
"\n",
|
694 |
+
" with gr.Row():\n",
|
695 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
696 |
+
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
697 |
+
"\n",
|
698 |
+
" def process_input(pdb_id, uploaded_file):\n",
|
699 |
+
" \"\"\"\n",
|
700 |
+
" Determine whether to use PDB ID or uploaded file\n",
|
701 |
+
" \"\"\"\n",
|
702 |
+
" if uploaded_file and uploaded_file.endswith('.pdb'):\n",
|
703 |
+
" return uploaded_file\n",
|
704 |
+
" return pdb_id\n",
|
705 |
+
"\n",
|
706 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
707 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
708 |
+
" download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
|
709 |
+
" \n",
|
710 |
+
" prediction_btn.click(\n",
|
711 |
+
" process_pdb, \n",
|
712 |
+
" inputs=[\n",
|
713 |
+
" gr.State(lambda: process_input(pdb_input.value, file_input.value)), \n",
|
714 |
+
" segment_input\n",
|
715 |
+
" ], \n",
|
716 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
717 |
+
" )\n",
|
718 |
+
"\n",
|
719 |
+
" visualize_btn.click(\n",
|
720 |
+
" fetch_pdb, \n",
|
721 |
+
" inputs=[pdb_input], \n",
|
722 |
+
" outputs=molecule_output2\n",
|
723 |
+
" )\n",
|
724 |
+
"\n",
|
725 |
+
" gr.Markdown(\"## Examples\")\n",
|
726 |
+
" gr.Examples(\n",
|
727 |
+
" examples=[\n",
|
728 |
+
" [\"7RPZ\", \"A\"],\n",
|
729 |
+
" [\"2IWI\", \"B\"],\n",
|
730 |
+
" [\"2F6V\", \"A\"]\n",
|
731 |
+
" ],\n",
|
732 |
+
" inputs=[pdb_input, segment_input],\n",
|
733 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
734 |
+
" )\n",
|
735 |
+
"\n",
|
736 |
+
"demo.launch(share=True)"
|
737 |
+
]
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"cell_type": "code",
|
741 |
+
"execution_count": 32,
|
742 |
+
"id": "5b266025-7503-48f5-9371-3642d09f7e93",
|
743 |
+
"metadata": {},
|
744 |
+
"outputs": [
|
745 |
+
{
|
746 |
+
"name": "stdout",
|
747 |
+
"output_type": "stream",
|
748 |
+
"text": [
|
749 |
+
"* Running on local URL: http://127.0.0.1:7890\n",
|
750 |
+
"* Running on public URL: https://70a6e80d8deb42ddd0.gradio.live\n",
|
751 |
+
"\n",
|
752 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
753 |
+
]
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"data": {
|
757 |
+
"text/html": [
|
758 |
+
"<div><iframe src=\"https://70a6e80d8deb42ddd0.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
759 |
+
],
|
760 |
+
"text/plain": [
|
761 |
+
"<IPython.core.display.HTML object>"
|
762 |
+
]
|
763 |
+
},
|
764 |
+
"metadata": {},
|
765 |
+
"output_type": "display_data"
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"data": {
|
769 |
+
"text/plain": []
|
770 |
+
},
|
771 |
+
"execution_count": 32,
|
772 |
+
"metadata": {},
|
773 |
+
"output_type": "execute_result"
|
774 |
+
}
|
775 |
+
],
|
776 |
+
"source": [
|
777 |
+
"import os\n",
|
778 |
+
"from datetime import datetime\n",
|
779 |
+
"import gradio as gr\n",
|
780 |
+
"import numpy as np\n",
|
781 |
+
"import requests\n",
|
782 |
+
"from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
|
783 |
+
"from Bio.PDB.Polypeptide import is_aa\n",
|
784 |
+
"from Bio.SeqUtils import seq1\n",
|
785 |
+
"from gradio_molecule3d import Molecule3D\n",
|
786 |
+
"from typing import Optional, Tuple\n",
|
787 |
+
"\n",
|
788 |
+
"def normalize_scores(scores):\n",
|
789 |
+
" min_score = np.min(scores)\n",
|
790 |
+
" max_score = np.max(scores)\n",
|
791 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
792 |
+
"\n",
|
793 |
+
"def read_mol(pdb_path):\n",
|
794 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
795 |
+
" with open(pdb_path, 'r') as f:\n",
|
796 |
+
" return f.read()\n",
|
797 |
+
"\n",
|
798 |
+
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
|
799 |
+
" \"\"\"\n",
|
800 |
+
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
|
801 |
+
" If a structure file already exists locally, it uses that.\n",
|
802 |
+
" \"\"\"\n",
|
803 |
+
" file_path = download_structure(pdb_id, output_dir)\n",
|
804 |
+
" if file_path:\n",
|
805 |
+
" return file_path\n",
|
806 |
+
" else:\n",
|
807 |
+
" return None\n",
|
808 |
+
"\n",
|
809 |
+
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
|
810 |
+
" \"\"\"\n",
|
811 |
+
" Attempt to download the structure file in CIF or PDB format.\n",
|
812 |
+
" Returns the path to the downloaded file, or None if download fails.\n",
|
813 |
+
" \"\"\"\n",
|
814 |
+
" for ext in ['.cif', '.pdb']:\n",
|
815 |
+
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
|
816 |
+
" if os.path.exists(file_path):\n",
|
817 |
+
" return file_path\n",
|
818 |
+
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
|
819 |
+
" try:\n",
|
820 |
+
" response = requests.get(url, timeout=10)\n",
|
821 |
+
" if response.status_code == 200:\n",
|
822 |
+
" with open(file_path, 'wb') as f:\n",
|
823 |
+
" f.write(response.content)\n",
|
824 |
+
" return file_path\n",
|
825 |
+
" except Exception as e:\n",
|
826 |
+
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
|
827 |
+
" return None\n",
|
828 |
+
"\n",
|
829 |
+
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
|
830 |
+
" \"\"\"\n",
|
831 |
+
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
|
832 |
+
" \"\"\"\n",
|
833 |
+
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
|
834 |
+
" parser = MMCIFParser(QUIET=True)\n",
|
835 |
+
" structure = parser.get_structure('protein', cif_path)\n",
|
836 |
+
" io = PDBIO()\n",
|
837 |
+
" io.set_structure(structure)\n",
|
838 |
+
" io.save(pdb_path)\n",
|
839 |
+
" return pdb_path\n",
|
840 |
+
"\n",
|
841 |
+
"def fetch_pdb(pdb_id):\n",
|
842 |
+
" pdb_path = fetch_structure(pdb_id)\n",
|
843 |
+
" if not pdb_path:\n",
|
844 |
+
" return None\n",
|
845 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
846 |
+
" if ext == '.cif':\n",
|
847 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
848 |
+
" return pdb_path\n",
|
849 |
+
"\n",
|
850 |
+
"def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:\n",
|
851 |
+
" \"\"\"\n",
|
852 |
+
" Create a PDB file with only the specified chain and replace B-factor with prediction scores\n",
|
853 |
+
" \"\"\"\n",
|
854 |
+
" # Read the original PDB file\n",
|
855 |
+
" parser = PDBParser(QUIET=True)\n",
|
856 |
+
" structure = parser.get_structure('protein', input_pdb)\n",
|
857 |
+
" \n",
|
858 |
+
" # Prepare a new structure with only the specified chain\n",
|
859 |
+
" new_structure = structure.copy()\n",
|
860 |
+
" for model in new_structure:\n",
|
861 |
+
" # Remove all chains except the specified one\n",
|
862 |
+
" chains_to_remove = [chain for chain in model if chain.id != chain_id]\n",
|
863 |
+
" for chain in chains_to_remove:\n",
|
864 |
+
" model.detach_child(chain.id)\n",
|
865 |
+
" \n",
|
866 |
+
" # Create a modified PDB with scores in B-factor\n",
|
867 |
+
" scores_dict = {resi: score for resi, score in residue_scores}\n",
|
868 |
+
" for model in new_structure:\n",
|
869 |
+
" for chain in model:\n",
|
870 |
+
" for residue in chain:\n",
|
871 |
+
" if residue.id[1] in scores_dict:\n",
|
872 |
+
" for atom in residue:\n",
|
873 |
+
" atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range\n",
|
874 |
+
" \n",
|
875 |
+
" # Save the modified structure\n",
|
876 |
+
" output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
|
877 |
+
" io = PDBIO()\n",
|
878 |
+
" io.set_structure(new_structure)\n",
|
879 |
+
" io.save(output_pdb)\n",
|
880 |
+
" \n",
|
881 |
+
" return output_pdb\n",
|
882 |
+
"\n",
|
883 |
+
"def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
|
884 |
+
" \"\"\"\n",
|
885 |
+
" Calculate the geometric center of high-scoring residues\n",
|
886 |
+
" \"\"\"\n",
|
887 |
+
" parser = PDBParser(QUIET=True)\n",
|
888 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
889 |
+
" \n",
|
890 |
+
" # Collect coordinates of CA atoms from high-scoring residues\n",
|
891 |
+
" coords = []\n",
|
892 |
+
" for model in structure:\n",
|
893 |
+
" for chain in model:\n",
|
894 |
+
" if chain.id == chain_id:\n",
|
895 |
+
" for residue in chain:\n",
|
896 |
+
" if residue.id[1] in high_score_residues:\n",
|
897 |
+
" if 'CA' in residue: # Use alpha carbon as representative\n",
|
898 |
+
" ca_atom = residue['CA']\n",
|
899 |
+
" coords.append(ca_atom.coord)\n",
|
900 |
+
" \n",
|
901 |
+
" # Calculate geometric center\n",
|
902 |
+
" if coords:\n",
|
903 |
+
" center = np.mean(coords, axis=0)\n",
|
904 |
+
" return center\n",
|
905 |
+
" return None\n",
|
906 |
+
"\n",
|
907 |
+
"def process_pdb(pdb_id_or_file, segment):\n",
|
908 |
+
" # Determine if input is a PDB ID or file path\n",
|
909 |
+
" if pdb_id_or_file.endswith('.pdb'):\n",
|
910 |
+
" pdb_path = pdb_id_or_file\n",
|
911 |
+
" pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
|
912 |
+
" else:\n",
|
913 |
+
" pdb_id = pdb_id_or_file\n",
|
914 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
915 |
+
" \n",
|
916 |
+
" if not pdb_path:\n",
|
917 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
918 |
+
" \n",
|
919 |
+
" # Determine the file format and choose the appropriate parser\n",
|
920 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
921 |
+
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
|
922 |
+
" \n",
|
923 |
+
" try:\n",
|
924 |
+
" # Parse the structure file\n",
|
925 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
926 |
+
" except Exception as e:\n",
|
927 |
+
" return f\"Error parsing structure file: {e}\", None, None\n",
|
928 |
+
" \n",
|
929 |
+
" # Extract the specified chain\n",
|
930 |
+
" try:\n",
|
931 |
+
" chain = structure[0][segment]\n",
|
932 |
+
" except KeyError:\n",
|
933 |
+
" return \"Invalid Chain ID\", None, None\n",
|
934 |
+
" \n",
|
935 |
+
" protein_residues = [res for res in chain if is_aa(res)]\n",
|
936 |
+
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
|
937 |
+
" sequence_id = [res.id[1] for res in protein_residues]\n",
|
938 |
+
" \n",
|
939 |
+
" # Generate random scores for residues\n",
|
940 |
+
" scores = np.random.rand(len(sequence))\n",
|
941 |
+
" normalized_scores = normalize_scores(scores)\n",
|
942 |
+
" \n",
|
943 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
944 |
+
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
|
945 |
+
"\n",
|
946 |
+
" # Identify high and mid scoring residues\n",
|
947 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
948 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
949 |
+
"\n",
|
950 |
+
" # Calculate geometric center of high-scoring residues\n",
|
951 |
+
" geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
|
952 |
+
" pymol_selection = f\"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\"\n",
|
953 |
+
" pymol_center_cmd = f\"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\" if geo_center is not None else \"\"\n",
|
954 |
+
"\n",
|
955 |
+
" # Generate the result string\n",
|
956 |
+
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
957 |
+
" result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
|
958 |
+
" result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
|
959 |
+
" result_str += \"\\n\".join([\n",
|
960 |
+
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
961 |
+
" for i, res in enumerate(protein_residues)])\n",
|
962 |
+
" \n",
|
963 |
+
" # Create prediction and scored PDB files\n",
|
964 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
965 |
+
" with open(prediction_file, \"w\") as f:\n",
|
966 |
+
" f.write(result_str)\n",
|
967 |
+
"\n",
|
968 |
+
" # Create chain-specific PDB with scores in B-factor\n",
|
969 |
+
" scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)\n",
|
970 |
+
"\n",
|
971 |
+
" # Molecule visualization with updated script\n",
|
972 |
+
" mol_vis = molecule(pdb_path, residue_scores, segment)\n",
|
973 |
+
"\n",
|
974 |
+
" # Construct PyMOL command suggestions\n",
|
975 |
+
" pymol_commands = f\"\"\"\n",
|
976 |
+
"PyMOL Visualization Commands:\n",
|
977 |
+
"1. Load PDB: load {os.path.abspath(pdb_path)}\n",
|
978 |
+
"2. Select high-scoring residues: {pymol_selection}\n",
|
979 |
+
"3. Highlight high-scoring residues: show sticks, high_score_residues\n",
|
980 |
+
"{pymol_center_cmd}\n",
|
981 |
+
"\"\"\"\n",
|
982 |
+
" \n",
|
983 |
+
" return result_str + \"\\n\\n\" + pymol_commands, mol_vis, [prediction_file, scored_pdb]\n",
|
984 |
+
"\n",
|
985 |
+
"# molecule() function remains the same as in the previous script, \n",
|
986 |
+
"# but modify the visualization script to ensure cartoon is below stick representations\n",
|
987 |
+
"\n",
|
988 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
989 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
990 |
+
"\n",
|
991 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
992 |
+
" high_score_script = \"\"\n",
|
993 |
+
" if residue_scores is not None:\n",
|
994 |
+
" # Filter residues based on their scores\n",
|
995 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
996 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
997 |
+
" \n",
|
998 |
+
" high_score_script = \"\"\"\n",
|
999 |
+
" // Load the original model and apply white cartoon style\n",
|
1000 |
+
" let chainModel = viewer.addModel(pdb, \"pdb\");\n",
|
1001 |
+
" chainModel.setStyle(\n",
|
1002 |
+
" {\"chain\": \"%s\"}, \n",
|
1003 |
+
" {\"cartoon\": {\"color\": \"white\"}}\n",
|
1004 |
+
" );\n",
|
1005 |
+
"\n",
|
1006 |
+
" // Create a new model for high-scoring residues and apply red sticks style\n",
|
1007 |
+
" let highScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1008 |
+
" highScoreModel.setStyle(\n",
|
1009 |
+
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1010 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
1011 |
+
" );\n",
|
1012 |
+
"\n",
|
1013 |
+
" // Create a new model for medium-scoring residues and apply orange sticks style\n",
|
1014 |
+
" let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1015 |
+
" midScoreModel.setStyle(\n",
|
1016 |
+
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1017 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1018 |
+
" );\n",
|
1019 |
+
" \"\"\" % (\n",
|
1020 |
+
" segment,\n",
|
1021 |
+
" segment,\n",
|
1022 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
1023 |
+
" segment,\n",
|
1024 |
+
" \", \".join(str(resi) for resi in mid_score_residues)\n",
|
1025 |
+
" )\n",
|
1026 |
+
" \n",
|
1027 |
+
" # Generate the full HTML content\n",
|
1028 |
+
" html_content = f\"\"\"\n",
|
1029 |
+
" <!DOCTYPE html>\n",
|
1030 |
+
" <html>\n",
|
1031 |
+
" <head> \n",
|
1032 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
1033 |
+
" <style>\n",
|
1034 |
+
" .mol-container {{\n",
|
1035 |
+
" width: 100%;\n",
|
1036 |
+
" height: 700px;\n",
|
1037 |
+
" position: relative;\n",
|
1038 |
+
" }}\n",
|
1039 |
+
" </style>\n",
|
1040 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
1041 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
1042 |
+
" </head>\n",
|
1043 |
+
" <body>\n",
|
1044 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
1045 |
+
" <script>\n",
|
1046 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
1047 |
+
" $(document).ready(function () {{\n",
|
1048 |
+
" let element = $(\"#container\");\n",
|
1049 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
1050 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
1051 |
+
" \n",
|
1052 |
+
" {high_score_script}\n",
|
1053 |
+
" \n",
|
1054 |
+
" // Add hover functionality\n",
|
1055 |
+
" viewer.setHoverable(\n",
|
1056 |
+
" {{}}, \n",
|
1057 |
+
" true, \n",
|
1058 |
+
" function(atom, viewer, event, container) {{\n",
|
1059 |
+
" if (!atom.label) {{\n",
|
1060 |
+
" atom.label = viewer.addLabel(\n",
|
1061 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
1062 |
+
" {{\n",
|
1063 |
+
" position: atom, \n",
|
1064 |
+
" backgroundColor: 'mintcream', \n",
|
1065 |
+
" fontColor: 'black',\n",
|
1066 |
+
" fontSize: 12,\n",
|
1067 |
+
" padding: 2\n",
|
1068 |
+
" }}\n",
|
1069 |
+
" );\n",
|
1070 |
+
" }}\n",
|
1071 |
+
" }},\n",
|
1072 |
+
" function(atom, viewer) {{\n",
|
1073 |
+
" if (atom.label) {{\n",
|
1074 |
+
" viewer.removeLabel(atom.label);\n",
|
1075 |
+
" delete atom.label;\n",
|
1076 |
+
" }}\n",
|
1077 |
+
" }}\n",
|
1078 |
+
" );\n",
|
1079 |
+
" \n",
|
1080 |
+
" viewer.zoomTo();\n",
|
1081 |
+
" viewer.render();\n",
|
1082 |
+
" viewer.zoom(0.8, 2000);\n",
|
1083 |
+
" }});\n",
|
1084 |
+
" </script>\n",
|
1085 |
+
" </body>\n",
|
1086 |
+
" </html>\n",
|
1087 |
+
" \"\"\"\n",
|
1088 |
+
" \n",
|
1089 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
1090 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
1091 |
+
"\n",
|
1092 |
+
"\n",
|
1093 |
+
"# Gradio UI\n",
|
1094 |
+
"with gr.Blocks() as demo:\n",
|
1095 |
+
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
1096 |
+
" \n",
|
1097 |
+
" with gr.Row():\n",
|
1098 |
+
" pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1099 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
1100 |
+
"\n",
|
1101 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
|
1102 |
+
" {\n",
|
1103 |
+
" \"model\": 0,\n",
|
1104 |
+
" \"style\": \"cartoon\",\n",
|
1105 |
+
" \"color\": \"whiteCarbon\",\n",
|
1106 |
+
" \"residue_range\": \"\",\n",
|
1107 |
+
" \"around\": 0,\n",
|
1108 |
+
" \"byres\": False,\n",
|
1109 |
+
" }\n",
|
1110 |
+
" ])\n",
|
1111 |
+
"\n",
|
1112 |
+
" with gr.Row():\n",
|
1113 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
1114 |
+
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
1115 |
+
"\n",
|
1116 |
+
"\n",
|
1117 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
1118 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1119 |
+
" download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
|
1120 |
+
" \n",
|
1121 |
+
" prediction_btn.click(\n",
|
1122 |
+
" process_pdb, \n",
|
1123 |
+
" inputs=[\n",
|
1124 |
+
" pdb_input, \n",
|
1125 |
+
" segment_input\n",
|
1126 |
+
" ], \n",
|
1127 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1128 |
+
" )\n",
|
1129 |
+
"\n",
|
1130 |
+
" visualize_btn.click(\n",
|
1131 |
+
" fetch_pdb, \n",
|
1132 |
+
" inputs=[pdb_input], \n",
|
1133 |
+
" outputs=molecule_output2\n",
|
1134 |
+
" )\n",
|
1135 |
+
"\n",
|
1136 |
+
" gr.Markdown(\"## Examples\")\n",
|
1137 |
+
" gr.Examples(\n",
|
1138 |
+
" examples=[\n",
|
1139 |
+
" [\"7RPZ\", \"A\"],\n",
|
1140 |
+
" [\"2IWI\", \"B\"],\n",
|
1141 |
+
" [\"2F6V\", \"A\"]\n",
|
1142 |
+
" ],\n",
|
1143 |
+
" inputs=[pdb_input, segment_input],\n",
|
1144 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1145 |
+
" )\n",
|
1146 |
+
"\n",
|
1147 |
+
"demo.launch(share=True)"
|
1148 |
+
]
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"cell_type": "code",
|
1152 |
+
"execution_count": 39,
|
1153 |
+
"id": "514fad12-a31a-495f-af9e-04a18e11175e",
|
1154 |
+
"metadata": {},
|
1155 |
+
"outputs": [
|
1156 |
+
{
|
1157 |
+
"name": "stdout",
|
1158 |
+
"output_type": "stream",
|
1159 |
+
"text": [
|
1160 |
+
"* Running on local URL: http://127.0.0.1:7897\n",
|
1161 |
+
"* Running on public URL: https://0d9b5d36fa5302e0df.gradio.live\n",
|
1162 |
+
"\n",
|
1163 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
1164 |
+
]
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"data": {
|
1168 |
+
"text/html": [
|
1169 |
+
"<div><iframe src=\"https://0d9b5d36fa5302e0df.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
1170 |
+
],
|
1171 |
+
"text/plain": [
|
1172 |
+
"<IPython.core.display.HTML object>"
|
1173 |
+
]
|
1174 |
+
},
|
1175 |
+
"metadata": {},
|
1176 |
+
"output_type": "display_data"
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"data": {
|
1180 |
+
"text/plain": []
|
1181 |
+
},
|
1182 |
+
"execution_count": 39,
|
1183 |
+
"metadata": {},
|
1184 |
+
"output_type": "execute_result"
|
1185 |
+
}
|
1186 |
+
],
|
1187 |
+
"source": [
|
1188 |
+
"import os\n",
|
1189 |
+
"from datetime import datetime\n",
|
1190 |
+
"import gradio as gr\n",
|
1191 |
+
"import numpy as np\n",
|
1192 |
+
"import requests\n",
|
1193 |
+
"from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
|
1194 |
+
"from Bio.PDB.Polypeptide import is_aa\n",
|
1195 |
+
"from Bio.SeqUtils import seq1\n",
|
1196 |
+
"from gradio_molecule3d import Molecule3D\n",
|
1197 |
+
"from typing import Optional, Tuple\n",
|
1198 |
+
"\n",
|
1199 |
+
"def normalize_scores(scores):\n",
|
1200 |
+
" min_score = np.min(scores)\n",
|
1201 |
+
" max_score = np.max(scores)\n",
|
1202 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
1203 |
+
"\n",
|
1204 |
+
"def read_mol(pdb_path):\n",
|
1205 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
1206 |
+
" with open(pdb_path, 'r') as f:\n",
|
1207 |
+
" return f.read()\n",
|
1208 |
+
"\n",
|
1209 |
+
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
|
1210 |
+
" \"\"\"\n",
|
1211 |
+
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
|
1212 |
+
" If a structure file already exists locally, it uses that.\n",
|
1213 |
+
" \"\"\"\n",
|
1214 |
+
" file_path = download_structure(pdb_id, output_dir)\n",
|
1215 |
+
" if file_path:\n",
|
1216 |
+
" return file_path\n",
|
1217 |
+
" else:\n",
|
1218 |
+
" return None\n",
|
1219 |
+
"\n",
|
1220 |
+
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
|
1221 |
+
" \"\"\"\n",
|
1222 |
+
" Attempt to download the structure file in CIF or PDB format.\n",
|
1223 |
+
" Returns the path to the downloaded file, or None if download fails.\n",
|
1224 |
+
" \"\"\"\n",
|
1225 |
+
" for ext in ['.cif', '.pdb']:\n",
|
1226 |
+
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
|
1227 |
+
" if os.path.exists(file_path):\n",
|
1228 |
+
" return file_path\n",
|
1229 |
+
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
|
1230 |
+
" try:\n",
|
1231 |
+
" response = requests.get(url, timeout=10)\n",
|
1232 |
+
" if response.status_code == 200:\n",
|
1233 |
+
" with open(file_path, 'wb') as f:\n",
|
1234 |
+
" f.write(response.content)\n",
|
1235 |
+
" return file_path\n",
|
1236 |
+
" except Exception as e:\n",
|
1237 |
+
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
|
1238 |
+
" return None\n",
|
1239 |
+
"\n",
|
1240 |
+
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
|
1241 |
+
" \"\"\"\n",
|
1242 |
+
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
|
1243 |
+
" \"\"\"\n",
|
1244 |
+
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
|
1245 |
+
" parser = MMCIFParser(QUIET=True)\n",
|
1246 |
+
" structure = parser.get_structure('protein', cif_path)\n",
|
1247 |
+
" io = PDBIO()\n",
|
1248 |
+
" io.set_structure(structure)\n",
|
1249 |
+
" io.save(pdb_path)\n",
|
1250 |
+
" return pdb_path\n",
|
1251 |
+
"\n",
|
1252 |
+
"def fetch_pdb(pdb_id):\n",
|
1253 |
+
" pdb_path = fetch_structure(pdb_id)\n",
|
1254 |
+
" if not pdb_path:\n",
|
1255 |
+
" return None\n",
|
1256 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
1257 |
+
" if ext == '.cif':\n",
|
1258 |
+
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
|
1259 |
+
" return pdb_path\n",
|
1260 |
+
"\n",
|
1261 |
+
"def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:\n",
|
1262 |
+
" \"\"\"\n",
|
1263 |
+
" Create a PDB file with only the specified chain and replace B-factor with prediction scores\n",
|
1264 |
+
" \"\"\"\n",
|
1265 |
+
" # Read the original PDB file\n",
|
1266 |
+
" parser = PDBParser(QUIET=True)\n",
|
1267 |
+
" structure = parser.get_structure('protein', input_pdb)\n",
|
1268 |
+
" \n",
|
1269 |
+
" # Prepare a new structure with only the specified chain\n",
|
1270 |
+
" new_structure = structure.copy()\n",
|
1271 |
+
" for model in new_structure:\n",
|
1272 |
+
" # Remove all chains except the specified one\n",
|
1273 |
+
" chains_to_remove = [chain for chain in model if chain.id != chain_id]\n",
|
1274 |
+
" for chain in chains_to_remove:\n",
|
1275 |
+
" model.detach_child(chain.id)\n",
|
1276 |
+
" \n",
|
1277 |
+
" # Create a modified PDB with scores in B-factor\n",
|
1278 |
+
" scores_dict = {resi: score for resi, score in residue_scores}\n",
|
1279 |
+
" for model in new_structure:\n",
|
1280 |
+
" for chain in model:\n",
|
1281 |
+
" for residue in chain:\n",
|
1282 |
+
" if residue.id[1] in scores_dict:\n",
|
1283 |
+
" for atom in residue:\n",
|
1284 |
+
" atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range\n",
|
1285 |
+
" \n",
|
1286 |
+
" # Save the modified structure\n",
|
1287 |
+
" output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
|
1288 |
+
" io = PDBIO()\n",
|
1289 |
+
" io.set_structure(new_structure)\n",
|
1290 |
+
" io.save(output_pdb)\n",
|
1291 |
+
" \n",
|
1292 |
+
" return output_pdb\n",
|
1293 |
+
"\n",
|
1294 |
+
"def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
|
1295 |
+
" \"\"\"\n",
|
1296 |
+
" Calculate the geometric center of high-scoring residues\n",
|
1297 |
+
" \"\"\"\n",
|
1298 |
+
" parser = PDBParser(QUIET=True)\n",
|
1299 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
1300 |
+
" \n",
|
1301 |
+
" # Collect coordinates of CA atoms from high-scoring residues\n",
|
1302 |
+
" coords = []\n",
|
1303 |
+
" for model in structure:\n",
|
1304 |
+
" for chain in model:\n",
|
1305 |
+
" if chain.id == chain_id:\n",
|
1306 |
+
" for residue in chain:\n",
|
1307 |
+
" if residue.id[1] in high_score_residues:\n",
|
1308 |
+
" if 'CA' in residue: # Use alpha carbon as representative\n",
|
1309 |
+
" ca_atom = residue['CA']\n",
|
1310 |
+
" coords.append(ca_atom.coord)\n",
|
1311 |
+
" \n",
|
1312 |
+
" # Calculate geometric center\n",
|
1313 |
+
" if coords:\n",
|
1314 |
+
" center = np.mean(coords, axis=0)\n",
|
1315 |
+
" return center\n",
|
1316 |
+
" return None\n",
|
1317 |
+
"\n",
|
1318 |
+
"def process_pdb(pdb_id_or_file, segment):\n",
|
1319 |
+
" # Determine if input is a PDB ID or file path\n",
|
1320 |
+
" if pdb_id_or_file.endswith('.pdb'):\n",
|
1321 |
+
" pdb_path = pdb_id_or_file\n",
|
1322 |
+
" pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
|
1323 |
+
" else:\n",
|
1324 |
+
" pdb_id = pdb_id_or_file\n",
|
1325 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
1326 |
+
" \n",
|
1327 |
+
" if not pdb_path:\n",
|
1328 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
1329 |
+
" \n",
|
1330 |
+
" # Determine the file format and choose the appropriate parser\n",
|
1331 |
+
" _, ext = os.path.splitext(pdb_path)\n",
|
1332 |
+
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
|
1333 |
+
" \n",
|
1334 |
+
" try:\n",
|
1335 |
+
" # Parse the structure file\n",
|
1336 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
1337 |
+
" except Exception as e:\n",
|
1338 |
+
" return f\"Error parsing structure file: {e}\", None, None\n",
|
1339 |
+
" \n",
|
1340 |
+
" # Extract the specified chain\n",
|
1341 |
+
" try:\n",
|
1342 |
+
" chain = structure[0][segment]\n",
|
1343 |
+
" except KeyError:\n",
|
1344 |
+
" return \"Invalid Chain ID\", None, None\n",
|
1345 |
+
" \n",
|
1346 |
+
" protein_residues = [res for res in chain if is_aa(res)]\n",
|
1347 |
+
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
|
1348 |
+
" sequence_id = [res.id[1] for res in protein_residues]\n",
|
1349 |
+
" \n",
|
1350 |
+
" # Generate random scores for residues\n",
|
1351 |
+
" scores = np.random.rand(len(sequence))\n",
|
1352 |
+
" normalized_scores = normalize_scores(scores)\n",
|
1353 |
+
" \n",
|
1354 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
1355 |
+
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
|
1356 |
+
"\n",
|
1357 |
+
" # Identify high and mid scoring residues\n",
|
1358 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
1359 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
1360 |
+
"\n",
|
1361 |
+
" # Calculate geometric center of high-scoring residues\n",
|
1362 |
+
" geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
|
1363 |
+
" pymol_selection = f\"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\"\n",
|
1364 |
+
" pymol_center_cmd = f\"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\" if geo_center is not None else \"\"\n",
|
1365 |
+
"\n",
|
1366 |
+
" # Generate the result string\n",
|
1367 |
+
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
1368 |
+
" result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
|
1369 |
+
" result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
|
1370 |
+
" result_str += \"\\n\".join([\n",
|
1371 |
+
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1372 |
+
" for i, res in enumerate(protein_residues)])\n",
|
1373 |
+
" \n",
|
1374 |
+
" # Create prediction and scored PDB files\n",
|
1375 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
1376 |
+
" with open(prediction_file, \"w\") as f:\n",
|
1377 |
+
" f.write(result_str)\n",
|
1378 |
+
"\n",
|
1379 |
+
" # Create chain-specific PDB with scores in B-factor\n",
|
1380 |
+
" scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)\n",
|
1381 |
+
"\n",
|
1382 |
+
" # Molecule visualization with updated script\n",
|
1383 |
+
" mol_vis = molecule(pdb_path, residue_scores, segment)\n",
|
1384 |
+
"\n",
|
1385 |
+
" # Construct PyMOL command suggestions\n",
|
1386 |
+
" pymol_commands = f\"\"\"\n",
|
1387 |
+
"PyMOL Visualization Commands:\n",
|
1388 |
+
"1. Load PDB: load {os.path.abspath(pdb_path)}\n",
|
1389 |
+
"2. Select high-scoring residues: {pymol_selection}\n",
|
1390 |
+
"3. Highlight high-scoring residues: show sticks, high_score_residues\n",
|
1391 |
+
"{pymol_center_cmd}\n",
|
1392 |
+
"\"\"\"\n",
|
1393 |
+
" \n",
|
1394 |
+
" return result_str + \"\\n\\n\" + pymol_commands, mol_vis, [prediction_file, scored_pdb]\n",
|
1395 |
+
"\n",
|
1396 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
1397 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
1398 |
+
"\n",
|
1399 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
1400 |
+
" high_score_script = \"\"\n",
|
1401 |
+
" if residue_scores is not None:\n",
|
1402 |
+
" # Filter residues based on their scores\n",
|
1403 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
1404 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
1405 |
+
" \n",
|
1406 |
+
" high_score_script = \"\"\"\n",
|
1407 |
+
" // Load the original model and apply white cartoon style\n",
|
1408 |
+
" let chainModel = viewer.addModel(pdb, \"pdb\");\n",
|
1409 |
+
" chainModel.setStyle({}, {});\n",
|
1410 |
+
" chainModel.setStyle(\n",
|
1411 |
+
" {\"chain\": \"%s\"}, \n",
|
1412 |
+
" {\"cartoon\": {\"color\": \"white\"}}\n",
|
1413 |
+
" );\n",
|
1414 |
+
"\n",
|
1415 |
+
" // Create a new model for high-scoring residues and apply red sticks style\n",
|
1416 |
+
" let highScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1417 |
+
" highScoreModel.setStyle({}, {});\n",
|
1418 |
+
" highScoreModel.setStyle(\n",
|
1419 |
+
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1420 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
1421 |
+
" );\n",
|
1422 |
+
"\n",
|
1423 |
+
" // Create a new model for medium-scoring residues and apply orange sticks style\n",
|
1424 |
+
" let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1425 |
+
" midScoreModel.setStyle({}, {});\n",
|
1426 |
+
" midScoreModel.setStyle(\n",
|
1427 |
+
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1428 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1429 |
+
" );\n",
|
1430 |
+
" \"\"\" % (\n",
|
1431 |
+
" segment,\n",
|
1432 |
+
" segment,\n",
|
1433 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
1434 |
+
" segment,\n",
|
1435 |
+
" \", \".join(str(resi) for resi in mid_score_residues)\n",
|
1436 |
+
" )\n",
|
1437 |
+
" \n",
|
1438 |
+
" # Generate the full HTML content\n",
|
1439 |
+
" html_content = f\"\"\"\n",
|
1440 |
+
" <!DOCTYPE html>\n",
|
1441 |
+
" <html>\n",
|
1442 |
+
" <head> \n",
|
1443 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
1444 |
+
" <style>\n",
|
1445 |
+
" .mol-container {{\n",
|
1446 |
+
" width: 100%;\n",
|
1447 |
+
" height: 700px;\n",
|
1448 |
+
" position: relative;\n",
|
1449 |
+
" }}\n",
|
1450 |
+
" </style>\n",
|
1451 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
1452 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
1453 |
+
" </head>\n",
|
1454 |
+
" <body>\n",
|
1455 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
1456 |
+
" <script>\n",
|
1457 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
1458 |
+
" $(document).ready(function () {{\n",
|
1459 |
+
" let element = $(\"#container\");\n",
|
1460 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
1461 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
1462 |
+
" \n",
|
1463 |
+
" {high_score_script}\n",
|
1464 |
+
" \n",
|
1465 |
+
" // Add hover functionality\n",
|
1466 |
+
" viewer.setHoverable(\n",
|
1467 |
+
" {{}}, \n",
|
1468 |
+
" true, \n",
|
1469 |
+
" function(atom, viewer, event, container) {{\n",
|
1470 |
+
" if (!atom.label) {{\n",
|
1471 |
+
" atom.label = viewer.addLabel(\n",
|
1472 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
1473 |
+
" {{\n",
|
1474 |
+
" position: atom, \n",
|
1475 |
+
" backgroundColor: 'mintcream', \n",
|
1476 |
+
" fontColor: 'black',\n",
|
1477 |
+
" fontSize: 12,\n",
|
1478 |
+
" padding: 2\n",
|
1479 |
+
" }}\n",
|
1480 |
+
" );\n",
|
1481 |
+
" }}\n",
|
1482 |
+
" }},\n",
|
1483 |
+
" function(atom, viewer) {{\n",
|
1484 |
+
" if (atom.label) {{\n",
|
1485 |
+
" viewer.removeLabel(atom.label);\n",
|
1486 |
+
" delete atom.label;\n",
|
1487 |
+
" }}\n",
|
1488 |
+
" }}\n",
|
1489 |
+
" );\n",
|
1490 |
+
" \n",
|
1491 |
+
" viewer.zoomTo();\n",
|
1492 |
+
" viewer.render();\n",
|
1493 |
+
" viewer.zoom(0.8, 2000);\n",
|
1494 |
+
" }});\n",
|
1495 |
+
" </script>\n",
|
1496 |
+
" </body>\n",
|
1497 |
+
" </html>\n",
|
1498 |
+
" \"\"\"\n",
|
1499 |
+
" \n",
|
1500 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
1501 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
1502 |
+
"\n",
|
1503 |
+
"\n",
|
1504 |
+
"# Gradio UI\n",
|
1505 |
+
"with gr.Blocks() as demo:\n",
|
1506 |
+
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
1507 |
+
" \n",
|
1508 |
+
" with gr.Row():\n",
|
1509 |
+
" pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1510 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
1511 |
+
"\n",
|
1512 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
|
1513 |
+
" {\n",
|
1514 |
+
" \"model\": 0,\n",
|
1515 |
+
" \"style\": \"cartoon\",\n",
|
1516 |
+
" \"color\": \"whiteCarbon\",\n",
|
1517 |
+
" \"residue_range\": \"\",\n",
|
1518 |
+
" \"around\": 0,\n",
|
1519 |
+
" \"byres\": False,\n",
|
1520 |
+
" }\n",
|
1521 |
+
" ])\n",
|
1522 |
+
"\n",
|
1523 |
+
" with gr.Row():\n",
|
1524 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
1525 |
+
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
1526 |
+
"\n",
|
1527 |
+
"\n",
|
1528 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
1529 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1530 |
+
" download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
|
1531 |
+
" \n",
|
1532 |
+
" prediction_btn.click(\n",
|
1533 |
+
" process_pdb, \n",
|
1534 |
+
" inputs=[\n",
|
1535 |
+
" pdb_input, \n",
|
1536 |
+
" segment_input\n",
|
1537 |
+
" ], \n",
|
1538 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1539 |
+
" )\n",
|
1540 |
+
"\n",
|
1541 |
+
" visualize_btn.click(\n",
|
1542 |
+
" fetch_pdb, \n",
|
1543 |
+
" inputs=[pdb_input], \n",
|
1544 |
+
" outputs=molecule_output2\n",
|
1545 |
+
" )\n",
|
1546 |
+
"\n",
|
1547 |
+
" gr.Markdown(\"## Examples\")\n",
|
1548 |
+
" gr.Examples(\n",
|
1549 |
+
" examples=[\n",
|
1550 |
+
" [\"7RPZ\", \"A\"],\n",
|
1551 |
+
" [\"2IWI\", \"B\"],\n",
|
1552 |
+
" [\"2F6V\", \"A\"]\n",
|
1553 |
+
" ],\n",
|
1554 |
+
" inputs=[pdb_input, segment_input],\n",
|
1555 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1556 |
+
" )\n",
|
1557 |
+
"\n",
|
1558 |
+
"demo.launch(share=True)"
|
1559 |
+
]
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"cell_type": "code",
|
1563 |
+
"execution_count": null,
|
1564 |
+
"id": "2f960cc2-8330-40f1-b54d-693ce922fa74",
|
1565 |
+
"metadata": {},
|
1566 |
+
"outputs": [],
|
1567 |
+
"source": []
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"cell_type": "code",
|
1571 |
+
"execution_count": null,
|
1572 |
+
"id": "cec41eef-c414-440f-a0ea-63fc8d3acf0b",
|
1573 |
+
"metadata": {},
|
1574 |
+
"outputs": [],
|
1575 |
+
"source": []
|
1576 |
+
}
|
1577 |
+
],
|
1578 |
+
"metadata": {
|
1579 |
+
"kernelspec": {
|
1580 |
+
"display_name": "Python (LLM)",
|
1581 |
+
"language": "python",
|
1582 |
+
"name": "llm"
|
1583 |
+
},
|
1584 |
+
"language_info": {
|
1585 |
+
"codemirror_mode": {
|
1586 |
+
"name": "ipython",
|
1587 |
+
"version": 3
|
1588 |
+
},
|
1589 |
+
"file_extension": ".py",
|
1590 |
+
"mimetype": "text/x-python",
|
1591 |
+
"name": "python",
|
1592 |
+
"nbconvert_exporter": "python",
|
1593 |
+
"pygments_lexer": "ipython3",
|
1594 |
+
"version": "3.12.7"
|
1595 |
+
}
|
1596 |
+
},
|
1597 |
+
"nbformat": 4,
|
1598 |
+
"nbformat_minor": 5
|
1599 |
+
}
|