Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
import torch | |
import xatlas | |
import trimesh | |
import cv2 | |
import numpy as np | |
import nvdiffrast.torch as dr | |
from PIL import Image | |
def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fpath): | |
pointnp_px3 = pointnp_px3 @ np.array([[1, 0, 0], [0, 1, 0], [0, 0, -1]]) | |
facenp_fx3 = facenp_fx3[:, [2, 1, 0]] | |
mesh = trimesh.Trimesh( | |
vertices=pointnp_px3, | |
faces=facenp_fx3, | |
vertex_colors=colornp_px3, | |
) | |
mesh.export(fpath, 'obj') | |
def save_glb(pointnp_px3, facenp_fx3, colornp_px3, fpath): | |
pointnp_px3 = pointnp_px3 @ np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]) | |
mesh = trimesh.Trimesh( | |
vertices=pointnp_px3, | |
faces=facenp_fx3, | |
vertex_colors=colornp_px3, | |
) | |
mesh.export(fpath, 'glb') | |
def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname): | |
import os | |
fol, na = os.path.split(fname) | |
na, _ = os.path.splitext(na) | |
matname = '%s/%s.mtl' % (fol, na) | |
fid = open(matname, 'w') | |
fid.write('newmtl material_0\n') | |
fid.write('Kd 1 1 1\n') | |
fid.write('Ka 0 0 0\n') | |
fid.write('Ks 0.4 0.4 0.4\n') | |
fid.write('Ns 10\n') | |
fid.write('illum 2\n') | |
fid.write('map_Kd %s.png\n' % na) | |
fid.close() | |
#### | |
fid = open(fname, 'w') | |
fid.write('mtllib %s.mtl\n' % na) | |
for pidx, p in enumerate(pointnp_px3): | |
pp = p | |
fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2])) | |
for pidx, p in enumerate(tcoords_px2): | |
pp = p | |
fid.write('vt %f %f\n' % (pp[0], pp[1])) | |
fid.write('usemtl material_0\n') | |
for i, f in enumerate(facenp_fx3): | |
f1 = f + 1 | |
f2 = facetex_fx3[i] + 1 | |
fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2])) | |
fid.close() | |
# save texture map | |
lo, hi = 0, 1 | |
img = np.asarray(texmap_hxwx3, dtype=np.float32) | |
img = (img - lo) * (255 / (hi - lo)) | |
img = img.clip(0, 255) | |
mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True) | |
mask = (mask <= 3.0).astype(np.float32) | |
kernel = np.ones((3, 3), 'uint8') | |
dilate_img = cv2.dilate(img, kernel, iterations=1) | |
img = img * (1 - mask) + dilate_img * mask | |
img = img.clip(0, 255).astype(np.uint8) | |
Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png') | |
def loadobj(meshfile): | |
v = [] | |
f = [] | |
meshfp = open(meshfile, 'r') | |
for line in meshfp.readlines(): | |
data = line.strip().split(' ') | |
data = [da for da in data if len(da) > 0] | |
if len(data) != 4: | |
continue | |
if data[0] == 'v': | |
v.append([float(d) for d in data[1:]]) | |
if data[0] == 'f': | |
data = [da.split('/')[0] for da in data] | |
f.append([int(d) for d in data[1:]]) | |
meshfp.close() | |
# torch need int64 | |
facenp_fx3 = np.array(f, dtype=np.int64) - 1 | |
pointnp_px3 = np.array(v, dtype=np.float32) | |
return pointnp_px3, facenp_fx3 | |
def loadobjtex(meshfile): | |
v = [] | |
vt = [] | |
f = [] | |
ft = [] | |
meshfp = open(meshfile, 'r') | |
for line in meshfp.readlines(): | |
data = line.strip().split(' ') | |
data = [da for da in data if len(da) > 0] | |
if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)): | |
continue | |
if data[0] == 'v': | |
assert len(data) == 4 | |
v.append([float(d) for d in data[1:]]) | |
if data[0] == 'vt': | |
if len(data) == 3 or len(data) == 4: | |
vt.append([float(d) for d in data[1:3]]) | |
if data[0] == 'f': | |
data = [da.split('/') for da in data] | |
if len(data) == 4: | |
f.append([int(d[0]) for d in data[1:]]) | |
ft.append([int(d[1]) for d in data[1:]]) | |
elif len(data) == 5: | |
idx1 = [1, 2, 3] | |
data1 = [data[i] for i in idx1] | |
f.append([int(d[0]) for d in data1]) | |
ft.append([int(d[1]) for d in data1]) | |
idx2 = [1, 3, 4] | |
data2 = [data[i] for i in idx2] | |
f.append([int(d[0]) for d in data2]) | |
ft.append([int(d[1]) for d in data2]) | |
meshfp.close() | |
# torch need int64 | |
facenp_fx3 = np.array(f, dtype=np.int64) - 1 | |
ftnp_fx3 = np.array(ft, dtype=np.int64) - 1 | |
pointnp_px3 = np.array(v, dtype=np.float32) | |
uvs = np.array(vt, dtype=np.float32) | |
return pointnp_px3, facenp_fx3, uvs, ftnp_fx3 | |
# ============================================================================================== | |
def interpolate(attr, rast, attr_idx, rast_db=None): | |
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') | |
def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution): | |
vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy()) | |
# Convert to tensors | |
indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) | |
uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) | |
mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) | |
# mesh_v_tex. ture | |
uv_clip = uvs[None, ...] * 2.0 - 1.0 | |
# pad to four component coordinate | |
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) | |
# rasterize | |
rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution)) | |
# Interpolate world space position | |
gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) | |
mask = rast[..., 3:4] > 0 | |
return uvs, mesh_tex_idx, gb_pos, mask | |