Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2023, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
class BasicTransformerBlock(nn.Module): | |
""" | |
Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks. | |
""" | |
# use attention from torch.nn.MultiHeadAttention | |
# Block contains a cross-attention layer, a self-attention layer, and a MLP | |
def __init__( | |
self, | |
inner_dim: int, | |
cond_dim: int, | |
num_heads: int, | |
eps: float, | |
attn_drop: float = 0., | |
attn_bias: bool = False, | |
mlp_ratio: float = 4., | |
mlp_drop: float = 0., | |
): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(inner_dim) | |
self.cross_attn = nn.MultiheadAttention( | |
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, | |
dropout=attn_drop, bias=attn_bias, batch_first=True) | |
self.norm2 = nn.LayerNorm(inner_dim) | |
self.self_attn = nn.MultiheadAttention( | |
embed_dim=inner_dim, num_heads=num_heads, | |
dropout=attn_drop, bias=attn_bias, batch_first=True) | |
self.norm3 = nn.LayerNorm(inner_dim) | |
self.mlp = nn.Sequential( | |
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), | |
nn.GELU(), | |
nn.Dropout(mlp_drop), | |
nn.Linear(int(inner_dim * mlp_ratio), inner_dim), | |
nn.Dropout(mlp_drop), | |
) | |
def forward(self, x, cond): | |
# x: [N, L, D] | |
# cond: [N, L_cond, D_cond] | |
x = x + self.cross_attn(self.norm1(x), cond, cond)[0] | |
before_sa = self.norm2(x) | |
x = x + self.self_attn(before_sa, before_sa, before_sa)[0] | |
x = x + self.mlp(self.norm3(x)) | |
return x | |
class TriplaneTransformer(nn.Module): | |
""" | |
Transformer with condition that generates a triplane representation. | |
Reference: | |
Timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L486 | |
""" | |
def __init__( | |
self, | |
inner_dim: int, | |
image_feat_dim: int, | |
triplane_low_res: int, | |
triplane_high_res: int, | |
triplane_dim: int, | |
num_layers: int, | |
num_heads: int, | |
eps: float = 1e-6, | |
): | |
super().__init__() | |
# attributes | |
self.triplane_low_res = triplane_low_res | |
self.triplane_high_res = triplane_high_res | |
self.triplane_dim = triplane_dim | |
# modules | |
# initialize pos_embed with 1/sqrt(dim) * N(0, 1) | |
self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, inner_dim) * (1. / inner_dim) ** 0.5) | |
self.layers = nn.ModuleList([ | |
BasicTransformerBlock( | |
inner_dim=inner_dim, cond_dim=image_feat_dim, num_heads=num_heads, eps=eps) | |
for _ in range(num_layers) | |
]) | |
self.norm = nn.LayerNorm(inner_dim, eps=eps) | |
self.deconv = nn.ConvTranspose2d(inner_dim, triplane_dim, kernel_size=2, stride=2, padding=0) | |
def forward(self, image_feats): | |
# image_feats: [N, L_cond, D_cond] | |
N = image_feats.shape[0] | |
H = W = self.triplane_low_res | |
L = 3 * H * W | |
x = self.pos_embed.repeat(N, 1, 1) # [N, L, D] | |
for layer in self.layers: | |
x = layer(x, image_feats) | |
x = self.norm(x) | |
# separate each plane and apply deconv | |
x = x.view(N, 3, H, W, -1) | |
x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W] | |
x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W] | |
x = self.deconv(x) # [3*N, D', H', W'] | |
x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W'] | |
x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W'] | |
x = x.contiguous() | |
return x | |