Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio.inputs import Textbox, Slider | |
import requests | |
# Template | |
title = "A conversation with some NPC in a Tavern π»" | |
description = "" | |
article = """ | |
<p> If you liked don't forget to π the project π₯° </p> | |
<h2> Parameters: </h2> | |
<ul> | |
<li><i>message</i>: what you want to say to the NPC.</li> | |
<li><i>npc_name</i>: name of the NPC.</li> | |
<li><i>npc_prompt</i>: prompt of the NPC, we can modify it to see if results are better.</li> | |
<li><i>top_p</i>: control how deterministic the model is in generating a response.</li> | |
<li><i>temperature</i>: (sampling temperature) higher values means the model will take more risks.</li> | |
<li><i>max_new_tokens</i>: Max number of tokens in generation.</li> | |
</ul> | |
<img src='http://www.simoninithomas.com/test/gandalf.jpg', alt="Gandalf"/>""" | |
theme="huggingface" | |
# Builds the prompt from what previously happened | |
def build_prompt(conversation, context, interlocutor_names): | |
prompt = context + "\n" | |
for player_msg, npc_msg in conversation: | |
line = "\n- " + interlocutor_names[0] + ":" + player_msg | |
prompt += line | |
line = "\n- " + interlocutor_names[1] + ":" + npc_msg | |
prompt += line | |
prompt += "" | |
return prompt | |
# Recognize what the model said, if it used the correct format | |
def clean_chat_output(txt, prompt, interlocutor_names): | |
delimiter = "\n- "+interlocutor_names[0] | |
output = txt.replace(prompt, '') | |
output = output[:output.find(delimiter)] | |
return output | |
# GPT-J-6B API | |
API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B" | |
def query(payload): | |
response = requests.post(API_URL, json=payload) | |
return response.json() | |
def chat(message, npc_name, initial_prompt, top_p, temperature, max_new_tokens, history=[]): | |
interlocutor_names = ["Player", npc_name] | |
print("message", message) | |
print("npc_name", npc_name) | |
print("initial_prompt", initial_prompt) | |
print("top_p", top_p) | |
print("temperature", temperature) | |
print("max_new_tokens", max_new_tokens) | |
print("history", history) | |
response = "Test" | |
history.append((message, "")) | |
conversation = history | |
# Build the prompt | |
prompt = build_prompt(conversation, initial_prompt, interlocutor_names) | |
# Build JSON | |
json_req = {"inputs": prompt, | |
"parameters": | |
{ | |
"top_p": top_p, | |
"temperature": temperature, | |
"max_new_tokens": max_new_tokens, | |
"return_full_text": False | |
}} | |
# Get the output | |
output = query(json_req) | |
output = output[0]['generated_text'] | |
print("output", output) | |
answer = clean_chat_output(output, prompt, interlocutor_names) | |
response = answer | |
print("response", answer) | |
history[-1] = (message, response) | |
return history, history | |
#io = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B") | |
iface = gr.Interface(fn=chat, | |
inputs=[Textbox(label="message"), | |
Textbox(label="npc_name"), | |
Textbox(label="initial_prompt"), | |
Slider(minimum=0.5, maximum=1, step=0.05, default=0.9, label="top_p"), | |
Slider(minimum=0.5, maximum=1.5, step=0.1, default=1.1, label="temperature"), | |
Slider(minimum=20, maximum=250, step=10, default=50, label="max_new_tokens"), | |
"state"], | |
outputs=["chatbot","state"], | |
#examples="", | |
allow_screenshot=True, | |
allow_flagging=True, | |
title=title, | |
article=article, | |
theme=theme) | |
if __name__ == "__main__": | |
iface.launch() |