ThomasSimonini's picture
Update app.py
24fac89
import gradio as gr
import requests.exceptions
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
app = gr.Blocks()
def load_agent(model_id_1, model_id_2):
"""
This function load the agent's video and results
:return: video_path
"""
# Load the metrics
metadata_1 = get_metadata(model_id_1)
# Get the accuracy
results_1 = parse_metrics_accuracy(metadata_1)
# Load the video
video_path_1 = hf_hub_download(model_id_1, filename="replay.mp4")
# Load the metrics
metadata_2 = get_metadata(model_id_2)
# Get the accuracy
results_2 = parse_metrics_accuracy(metadata_2)
# Load the video
video_path_2 = hf_hub_download(model_id_2, filename="replay.mp4")
return model_id_1, video_path_1, results_1, model_id_2, video_path_2, results_2
def parse_metrics_accuracy(meta):
if "model-index" not in meta:
return None
result = meta["model-index"][0]["results"]
metrics = result[0]["metrics"]
accuracy = metrics[0]["value"]
return accuracy
def get_metadata(model_id):
"""
Get the metadata of the model repo
:param model_id:
:return: metadata
"""
try:
readme_path = hf_hub_download(model_id, filename="README.md")
metadata = metadata_load(readme_path)
print(metadata)
return metadata
except requests.exceptions.HTTPError:
return None
with app:
gr.Markdown(
"""
# Compare Deep Reinforcement Learning Agents 🤖
Type two models id you want to compare or check examples below.
""")
with gr.Row():
model1_input = gr.Textbox(label="Model 1")
model2_input = gr.Textbox(label="Model 2")
with gr.Row():
app_button = gr.Button("Compare models")
with gr.Row():
with gr.Column():
model1_name = gr.Markdown()
model1_video_output = gr.Video()
model1_score_output = gr.Textbox(label="Mean Reward +/- Std Reward")
with gr.Column():
model2_name = gr.Markdown()
model2_video_output = gr.Video()
model2_score_output = gr.Textbox(label="Mean Reward +/- Std Reward")
app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_video_output, model1_score_output, model2_name, model2_video_output, model2_score_output])
examples = gr.Examples(examples=[["sb3/a2c-AntBulletEnv-v0","sb3/ppo-AntBulletEnv-v0"],
["ThomasSimonini/a2c-AntBulletEnv-v0", "sb3/a2c-AntBulletEnv-v0"],
["sb3/dqn-SpaceInvadersNoFrameskip-v4", "sb3/a2c-SpaceInvadersNoFrameskip-v4"],
["ThomasSimonini/ppo-QbertNoFrameskip-v4","sb3/ppo-QbertNoFrameskip-v4"]],
inputs=[model1_input, model2_input])
app.launch()