Spaces:
Runtime error
Runtime error
import gradio as gr | |
import random | |
import requests | |
# Template | |
title = "A conversation with Gandalf (GPTJ-6B) π§" | |
description = "" | |
article = """ | |
<p> To reset you <b>need to reload the page.</b> </p> | |
<p> If you liked don't forget to π the project π₯° </p> | |
<h2> Parameters: </h2> | |
<ul> | |
<li><i>top_p</i>: control how deterministic the model is in generating a response.</li> | |
<li><i>temperature</i>: (sampling temperature) higher values means the model will take more risks.</li> | |
<li><i>max_new_tokens</i>: Max number of tokens in generation.</li> | |
</ul> | |
<img src='http://www.simoninithomas.com/test/gandalf.jpg', alt="Gandalf"/>""" | |
theme="huggingface" | |
examples = [[0.9, 1.1, 50, "Hey Gandalf! How are you?"], [0.9, 1.1, 50, "Hey Gandalf, why you didn't use the great eagles to fly Frodo to Mordor?"]] | |
# GPT-J-6B API | |
API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B" | |
def query(payload): | |
response = requests.post(API_URL, json=payload) | |
return response.json() | |
context_setup = "The following is a conversation with Gandalf, the mage of 'the Lord of the Rings'" | |
context=context_setup | |
interlocutor_names = ["Human", "Gandalf"] | |
# Builds the prompt from what previously happened | |
def build_prompt(conversation, context): | |
prompt = context + "\n" | |
for user_msg, resp_msg in conversation: | |
line = "\n- " + interlocutor_names[0] + ":" + user_msg | |
prompt += line | |
line = "\n- " + interlocutor_names[1] + ":" + resp_msg | |
prompt += line | |
prompt += "" | |
return prompt | |
# Attempt to recognize what the model said, if it used the correct format | |
def clean_chat_output(txt, prompt): | |
delimiter = "\n- "+interlocutor_names[0] | |
output = txt.replace(prompt, '') | |
output = output[:output.find(delimiter)] | |
return output | |
def chat(top_p, temperature, max_new_tokens, message): | |
history = gr.get_state() or [] | |
history.append((message, "")) | |
gr.set_state(history) | |
conversation = history | |
prompt = build_prompt(conversation, context) | |
# Build JSON | |
json_ = {"inputs": prompt, | |
"parameters": | |
{ | |
"top_p": top_p, | |
"temperature": temperature, | |
"max_new_tokens": max_new_tokens, | |
"return_full_text": False | |
}} | |
output = query(json_) | |
output = output[0]['generated_text'] | |
answer = clean_chat_output(output, prompt) | |
response = answer | |
history[-1] = (message, response) | |
gr.set_state(history) | |
html = "<div class='chatbot'>" | |
for user_msg, resp_msg in history: | |
html += f"<div class='user_msg'>{user_msg}</div>" | |
html += f"<div class='resp_msg'>{resp_msg}</div>" | |
html += "</div>" | |
return html | |
iface = gr.Interface( | |
chat, | |
[ | |
gr.inputs.Slider(minimum=0.5, maximum=1, step=0.05, default=0.9, label="top_p"), | |
gr.inputs.Slider(minimum=0.5, maximum=1.5, step=0.1, default=1.1, label="temperature"), | |
gr.inputs.Slider(minimum=20, maximum=250, step=10, default=50, label="max_new_tokens"), | |
"text", | |
], | |
"html", css=""" | |
.chatbox {display:flex;flex-direction:column} | |
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} | |
.user_msg {background-color:cornflowerblue;color:white;align-self:start} | |
.resp_msg {background-color:lightgray;align-self:self-end} | |
""", allow_screenshot=True, | |
allow_flagging=True, | |
title=title, | |
article=article, | |
theme=theme, | |
examples=examples) | |
if __name__ == "__main__": | |
iface.launch() | |