Spaces:
Runtime error
Runtime error
Thiwanka01
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.linear_model import LinearRegression
|
4 |
+
from sklearn.preprocessing import LabelEncoder
|
5 |
+
|
6 |
+
# Sample dataset (you would replace this with your actual dataset)
|
7 |
+
data = {
|
8 |
+
'chest': [34, 36, 38, 40, 42],
|
9 |
+
'waist': [28, 30, 32, 34, 36],
|
10 |
+
'hip': [36, 38, 40, 42, 44],
|
11 |
+
'size': ['S', 'M', 'L', 'XL', 'XXL'],
|
12 |
+
'fit': ['regular', 'tight', 'loose', 'regular', 'tight'], # Fit type (advanced feature)
|
13 |
+
'style': ['casual', 'formal', 'casual', 'casual', 'formal'] # Style preference (advanced feature)
|
14 |
+
}
|
15 |
+
|
16 |
+
# Train a LabelEncoder for sizes
|
17 |
+
label_encoder = LabelEncoder()
|
18 |
+
data['size_encoded'] = label_encoder.fit_transform(data['size'])
|
19 |
+
|
20 |
+
# Encode fit and style as well
|
21 |
+
fit_encoder = LabelEncoder()
|
22 |
+
data['fit_encoded'] = fit_encoder.fit_transform(data['fit'])
|
23 |
+
|
24 |
+
style_encoder = LabelEncoder()
|
25 |
+
data['style_encoded'] = style_encoder.fit_transform(data['style'])
|
26 |
+
|
27 |
+
# Prepare features and target
|
28 |
+
X = np.array([data['chest'], data['waist'], data['hip'], data['fit_encoded'], data['style_encoded']]).T
|
29 |
+
y = data['size_encoded'] # Using encoded sizes as the target
|
30 |
+
|
31 |
+
# Initialize and train the model
|
32 |
+
model = LinearRegression()
|
33 |
+
model.fit(X, y)
|
34 |
+
|
35 |
+
# Function to predict size based on measurements, fit, and style preferences
|
36 |
+
def predict_size(chest, waist, hip, fit, style):
|
37 |
+
# Encode the fit and style preferences
|
38 |
+
fit_encoded = fit_encoder.transform([fit])[0]
|
39 |
+
style_encoded = style_encoder.transform([style])[0]
|
40 |
+
|
41 |
+
# Create the input feature array
|
42 |
+
input_features = np.array([[chest, waist, hip, fit_encoded, style_encoded]])
|
43 |
+
|
44 |
+
# Predict the size
|
45 |
+
predicted_size_encoded = model.predict(input_features)
|
46 |
+
|
47 |
+
# Clamp the predicted size to ensure it's within the valid range of labels
|
48 |
+
predicted_size_encoded_clamped = np.clip(predicted_size_encoded, 0, len(label_encoder.classes_) - 1)
|
49 |
+
|
50 |
+
# Convert the numeric prediction back to the original size
|
51 |
+
predicted_size = label_encoder.inverse_transform(predicted_size_encoded_clamped.astype(int))
|
52 |
+
|
53 |
+
return predicted_size[0]
|
54 |
+
|
55 |
+
# Create the Gradio interface
|
56 |
+
interface = gr.Interface(
|
57 |
+
fn=predict_size,
|
58 |
+
inputs=[
|
59 |
+
gr.Slider(minimum=30, maximum=50, step=1, label="Chest (inches)"),
|
60 |
+
gr.Slider(minimum=20, maximum=40, step=1, label="Waist (inches)"),
|
61 |
+
gr.Slider(minimum=30, maximum=50, step=1, label="Hip (inches)"),
|
62 |
+
gr.Dropdown(choices=['regular', 'tight', 'loose'], label="Fit Type"),
|
63 |
+
gr.Dropdown(choices=['casual', 'formal'], label="Style Preference")
|
64 |
+
],
|
65 |
+
outputs="text",
|
66 |
+
live=True,
|
67 |
+
title="Advanced AI Size Advisor",
|
68 |
+
description="Enter your body measurements and preferences to get an accurate clothing size recommendation. The model takes into account fit and style preferences."
|
69 |
+
)
|
70 |
+
|
71 |
+
# Launch the interface
|
72 |
+
interface.launch()
|