Spaces:
Configuration error
Configuration error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import simplejson
|
2 |
+
import tensorflow
|
3 |
+
import visualization_utils as vis_util
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import label_map_util
|
9 |
+
import tensorflow as tf
|
10 |
+
from matplotlib import pyplot as plt
|
11 |
+
import time
|
12 |
+
import cv2
|
13 |
+
from numpy import asarray
|
14 |
+
import streamlit as st
|
15 |
+
st.title("Tag_Diciphering")
|
16 |
+
def prediction():
|
17 |
+
total_time_start = time.time()
|
18 |
+
|
19 |
+
|
20 |
+
def loadImageIntoNumpyArray(image):
|
21 |
+
(im_width, im_height) = image.size
|
22 |
+
if image.getdata().mode == "RGBA":
|
23 |
+
image = image.convert('RGB')
|
24 |
+
|
25 |
+
return asarray(image).reshape((im_height, im_width, 3)).astype(np.uint8)
|
26 |
+
|
27 |
+
|
28 |
+
def main(image_path,model_path,model_PATH_TO_CKPT,path_to_labels):
|
29 |
+
image = cv2.open(image_path)
|
30 |
+
image_np = loadImageIntoNumpyArray(image)
|
31 |
+
image_np_expanded = np.expand_dims(image_np, axis=0)
|
32 |
+
label_map = label_map_util.load_labelmap(path_to_labels)
|
33 |
+
# print("label_map------->",type(label_map))
|
34 |
+
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=100, use_display_name=True)
|
35 |
+
category_index = label_map_util.create_category_index(categories)
|
36 |
+
# print("category index-->",category_index)
|
37 |
+
|
38 |
+
detection_graph = tf.Graph()
|
39 |
+
with detection_graph.as_default():
|
40 |
+
od_graph_def = tf.compat.v1.GraphDef()
|
41 |
+
with tf.compat.v2.io.gfile.GFile(model_PATH_TO_CKPT, 'rb') as fid:
|
42 |
+
serialized_graph = fid.read()
|
43 |
+
od_graph_def.ParseFromString(serialized_graph)
|
44 |
+
tf.import_graph_def(od_graph_def, name='')
|
45 |
+
sess = tf.compat.v1.Session(graph=detection_graph)
|
46 |
+
# Input tensor is the image
|
47 |
+
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
48 |
+
# Output tensors are the detection boxes, scores, and classes
|
49 |
+
# Each box represents a part of the image where a particular object was detected
|
50 |
+
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
51 |
+
# Each score represents level of confidence for each of the objects.
|
52 |
+
# The score is shown on the result image, together with the class label.
|
53 |
+
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
54 |
+
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
55 |
+
# Number of objects detected
|
56 |
+
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
57 |
+
(boxes, scores, classes, num) = sess.run(
|
58 |
+
[detection_boxes, detection_scores, detection_classes, num_detections],
|
59 |
+
feed_dict={image_tensor: image_np_expanded})
|
60 |
+
vis_util.visualize_boxes_and_labels_on_image_array(
|
61 |
+
image_np,
|
62 |
+
np.squeeze(boxes),
|
63 |
+
np.squeeze(classes).astype(np.int32),
|
64 |
+
np.squeeze(scores),
|
65 |
+
category_index,
|
66 |
+
use_normalized_coordinates=True,
|
67 |
+
line_thickness=8,
|
68 |
+
min_score_thresh=0.1)
|
69 |
+
#%matplotlib inline
|
70 |
+
from matplotlib import pyplot as plt
|
71 |
+
# print("boxes:",boxes)
|
72 |
+
# print("class:",classes)
|
73 |
+
objects = []
|
74 |
+
threshold = 0.5
|
75 |
+
# print("category:",category_index)
|
76 |
+
boxes = boxes[0]
|
77 |
+
for index, value in enumerate(classes[0]):
|
78 |
+
object_dict = {}
|
79 |
+
if scores[0, index] > threshold:
|
80 |
+
object_dict["class"] = (category_index.get(value)).get('name')
|
81 |
+
object_dict["score"] = round(scores[0, index] * 100,2)
|
82 |
+
box = tuple(boxes[index].tolist())
|
83 |
+
ymin, xmin, ymax, xmax= box
|
84 |
+
im_width,im_height = 360,360
|
85 |
+
left, right, top, bottom = (xmin * im_width, xmax * im_width,
|
86 |
+
ymin * im_height, ymax * im_height)
|
87 |
+
object_dict["box"] = (int(left), int(right), int(top), int(bottom))
|
88 |
+
objects.append(object_dict)
|
89 |
+
|
90 |
+
image_orignal = Image.open(image_path)
|
91 |
+
image_np_orignal = loadImageIntoNumpyArray(image_orignal)
|
92 |
+
|
93 |
+
|
94 |
+
fig, ax = plt.subplots(1,2)
|
95 |
+
|
96 |
+
fig.suptitle('Tag Deciphering')
|
97 |
+
|
98 |
+
ax[0].imshow(image_np_orignal,aspect='auto');
|
99 |
+
ax[1].imshow(image_np,aspect='auto');
|
100 |
+
|
101 |
+
|
102 |
+
return objects
|
103 |
+
images = ["img1.jpg","img2.jpg","img3.jpg","img4.jpg"]
|
104 |
+
with st.sidebar:
|
105 |
+
st.write("choose an image")
|
106 |
+
st.image(images)
|
107 |
+
file = st.file_uploader('Upload an Image',type=(["jpeg","jpg","png"]))
|
108 |
+
|
109 |
+
if file is None:
|
110 |
+
st.write("Please upload an image file")
|
111 |
+
else:
|
112 |
+
image= Image.open(file)
|
113 |
+
st.image(image,use_column_width = True)
|
114 |
+
|
115 |
+
image_path = file
|
116 |
+
model_path = "//inference"
|
117 |
+
model_PATH_TO_CKPT = "frozen_inference_graph.pb"
|
118 |
+
path_to_labels = "tf_label_map.pbtxt"
|
119 |
+
|
120 |
+
result = main(image_path,model_path,model_PATH_TO_CKPT,path_to_labels)
|
121 |
+
st.write(result)
|
122 |
+
# print("result-",result)
|
123 |
+
# list_to_be_sorted= [{'class': 'Y', 'score': 99.97, 'box': (157, 191, 269, 288)}, {'class': '6', 'score': 99.93, 'box': (158, 191, 247, 267)}, {'class': '9', 'score': 99.88, 'box': (156, 190, 179, 196)}, {'class': '4', 'score': 99.8, 'box': (156, 189, 198, 219)}, {'class': '1', 'score': 99.65, 'box': (157, 189, 222, 244)}, {'class': 'F', 'score': 63.4, 'box': (155, 185, 157, 175)}]
|
124 |
+
newlist = sorted(result, key=lambda k: k['box'][3],reverse=False)
|
125 |
+
|
126 |
+
text =''
|
127 |
+
for each in newlist:
|
128 |
+
if(each['score']>65):
|
129 |
+
text += each['class']
|
130 |
+
# print("text:",text)
|
131 |
+
if(text!=""):
|
132 |
+
text = text.replace("yellowTag", "")
|
133 |
+
result = text
|
134 |
+
else:
|
135 |
+
result = "No Vertical Tag Detected"
|
136 |
+
response = {"predictions": [result]}
|
137 |
+
total_time_end = time.time()
|
138 |
+
print("total time : ",round((total_time_end-total_time_start),2))
|
139 |
+
st.write(str(simplejson.dumps(response)))
|
140 |
+
|
141 |
+
prediction()
|