Spaces:
Configuration error
Configuration error
Upload visualization_utils.py
Browse files- visualization_utils.py +1353 -0
visualization_utils.py
ADDED
@@ -0,0 +1,1353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
|
16 |
+
"""A set of functions that are used for visualization.
|
17 |
+
|
18 |
+
These functions often receive an image, perform some visualization on the image.
|
19 |
+
The functions do not return a value, instead they modify the image itself.
|
20 |
+
|
21 |
+
"""
|
22 |
+
from __future__ import absolute_import
|
23 |
+
from __future__ import division
|
24 |
+
from __future__ import print_function
|
25 |
+
|
26 |
+
|
27 |
+
import abc
|
28 |
+
import collections
|
29 |
+
# Set headless-friendly backend.
|
30 |
+
import matplotlib; matplotlib.use('Agg') # pylint: disable=multiple-statements
|
31 |
+
import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
|
32 |
+
import numpy as np
|
33 |
+
import PIL.Image as Image
|
34 |
+
import PIL.ImageColor as ImageColor
|
35 |
+
import PIL.ImageDraw as ImageDraw
|
36 |
+
import PIL.ImageFont as ImageFont
|
37 |
+
import six
|
38 |
+
from six.moves import range
|
39 |
+
from six.moves import zip
|
40 |
+
import tensorflow as tf
|
41 |
+
|
42 |
+
import keypoint_ops
|
43 |
+
import standard_fields as fields
|
44 |
+
import shape_utils
|
45 |
+
|
46 |
+
_TITLE_LEFT_MARGIN = 10
|
47 |
+
_TITLE_TOP_MARGIN = 10
|
48 |
+
STANDARD_COLORS = [
|
49 |
+
'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
|
50 |
+
'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
|
51 |
+
'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
|
52 |
+
'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
|
53 |
+
'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
|
54 |
+
'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
|
55 |
+
'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
|
56 |
+
'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
|
57 |
+
'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
|
58 |
+
'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
|
59 |
+
'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
|
60 |
+
'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
|
61 |
+
'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
|
62 |
+
'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
|
63 |
+
'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
|
64 |
+
'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
|
65 |
+
'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
|
66 |
+
'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
|
67 |
+
'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
|
68 |
+
'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
|
69 |
+
'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
|
70 |
+
'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
|
71 |
+
'WhiteSmoke', 'Yellow', 'YellowGreen'
|
72 |
+
]
|
73 |
+
|
74 |
+
|
75 |
+
def _get_multiplier_for_color_randomness():
|
76 |
+
"""Returns a multiplier to get semi-random colors from successive indices.
|
77 |
+
|
78 |
+
This function computes a prime number, p, in the range [2, 17] that:
|
79 |
+
- is closest to len(STANDARD_COLORS) / 10
|
80 |
+
- does not divide len(STANDARD_COLORS)
|
81 |
+
|
82 |
+
If no prime numbers in that range satisfy the constraints, p is returned as 1.
|
83 |
+
|
84 |
+
Once p is established, it can be used as a multiplier to select
|
85 |
+
non-consecutive colors from STANDARD_COLORS:
|
86 |
+
colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)]
|
87 |
+
"""
|
88 |
+
num_colors = len(STANDARD_COLORS)
|
89 |
+
prime_candidates = [5, 7, 11, 13, 17]
|
90 |
+
|
91 |
+
# Remove all prime candidates that divide the number of colors.
|
92 |
+
prime_candidates = [p for p in prime_candidates if num_colors % p]
|
93 |
+
if not prime_candidates:
|
94 |
+
return 1
|
95 |
+
|
96 |
+
# Return the closest prime number to num_colors / 10.
|
97 |
+
abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates]
|
98 |
+
num_candidates = len(abs_distance)
|
99 |
+
inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))]
|
100 |
+
return prime_candidates[inds[0]]
|
101 |
+
|
102 |
+
|
103 |
+
def save_image_array_as_png(image, output_path):
|
104 |
+
"""Saves an image (represented as a numpy array) to PNG.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
image: a numpy array with shape [height, width, 3].
|
108 |
+
output_path: path to which image should be written.
|
109 |
+
"""
|
110 |
+
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
|
111 |
+
with tf.gfile.Open(output_path, 'w') as fid:
|
112 |
+
image_pil.save(fid, 'PNG')
|
113 |
+
|
114 |
+
|
115 |
+
def encode_image_array_as_png_str(image):
|
116 |
+
"""Encodes a numpy array into a PNG string.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
image: a numpy array with shape [height, width, 3].
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
PNG encoded image string.
|
123 |
+
"""
|
124 |
+
image_pil = Image.fromarray(np.uint8(image))
|
125 |
+
output = six.BytesIO()
|
126 |
+
image_pil.save(output, format='PNG')
|
127 |
+
png_string = output.getvalue()
|
128 |
+
output.close()
|
129 |
+
return png_string
|
130 |
+
|
131 |
+
|
132 |
+
def draw_bounding_box_on_image_array(image,
|
133 |
+
ymin,
|
134 |
+
xmin,
|
135 |
+
ymax,
|
136 |
+
xmax,
|
137 |
+
color='red',
|
138 |
+
thickness=4,
|
139 |
+
display_str_list=(),
|
140 |
+
use_normalized_coordinates=True):
|
141 |
+
"""Adds a bounding box to an image (numpy array).
|
142 |
+
|
143 |
+
Bounding box coordinates can be specified in either absolute (pixel) or
|
144 |
+
normalized coordinates by setting the use_normalized_coordinates argument.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
image: a numpy array with shape [height, width, 3].
|
148 |
+
ymin: ymin of bounding box.
|
149 |
+
xmin: xmin of bounding box.
|
150 |
+
ymax: ymax of bounding box.
|
151 |
+
xmax: xmax of bounding box.
|
152 |
+
color: color to draw bounding box. Default is red.
|
153 |
+
thickness: line thickness. Default value is 4.
|
154 |
+
display_str_list: list of strings to display in box
|
155 |
+
(each to be shown on its own line).
|
156 |
+
use_normalized_coordinates: If True (default), treat coordinates
|
157 |
+
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
|
158 |
+
coordinates as absolute.
|
159 |
+
"""
|
160 |
+
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
|
161 |
+
draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
|
162 |
+
thickness, display_str_list,
|
163 |
+
use_normalized_coordinates)
|
164 |
+
np.copyto(image, np.array(image_pil))
|
165 |
+
|
166 |
+
|
167 |
+
def draw_bounding_box_on_image(image,
|
168 |
+
ymin,
|
169 |
+
xmin,
|
170 |
+
ymax,
|
171 |
+
xmax,
|
172 |
+
color='red',
|
173 |
+
thickness=4,
|
174 |
+
display_str_list=(),
|
175 |
+
use_normalized_coordinates=True):
|
176 |
+
"""Adds a bounding box to an image.
|
177 |
+
|
178 |
+
Bounding box coordinates can be specified in either absolute (pixel) or
|
179 |
+
normalized coordinates by setting the use_normalized_coordinates argument.
|
180 |
+
|
181 |
+
Each string in display_str_list is displayed on a separate line above the
|
182 |
+
bounding box in black text on a rectangle filled with the input 'color'.
|
183 |
+
If the top of the bounding box extends to the edge of the image, the strings
|
184 |
+
are displayed below the bounding box.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
image: a PIL.Image object.
|
188 |
+
ymin: ymin of bounding box.
|
189 |
+
xmin: xmin of bounding box.
|
190 |
+
ymax: ymax of bounding box.
|
191 |
+
xmax: xmax of bounding box.
|
192 |
+
color: color to draw bounding box. Default is red.
|
193 |
+
thickness: line thickness. Default value is 4.
|
194 |
+
display_str_list: list of strings to display in box
|
195 |
+
(each to be shown on its own line).
|
196 |
+
use_normalized_coordinates: If True (default), treat coordinates
|
197 |
+
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
|
198 |
+
coordinates as absolute.
|
199 |
+
"""
|
200 |
+
draw = ImageDraw.Draw(image)
|
201 |
+
im_width, im_height = image.size
|
202 |
+
if use_normalized_coordinates:
|
203 |
+
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
|
204 |
+
ymin * im_height, ymax * im_height)
|
205 |
+
else:
|
206 |
+
(left, right, top, bottom) = (xmin, xmax, ymin, ymax)
|
207 |
+
if thickness > 0:
|
208 |
+
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
|
209 |
+
(left, top)],
|
210 |
+
width=thickness,
|
211 |
+
fill=color)
|
212 |
+
try:
|
213 |
+
font = ImageFont.truetype('arial.ttf', 24)
|
214 |
+
except IOError:
|
215 |
+
font = ImageFont.load_default()
|
216 |
+
|
217 |
+
# If the total height of the display strings added to the top of the bounding
|
218 |
+
# box exceeds the top of the image, stack the strings below the bounding box
|
219 |
+
# instead of above.
|
220 |
+
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
|
221 |
+
# Each display_str has a top and bottom margin of 0.05x.
|
222 |
+
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
|
223 |
+
|
224 |
+
if top > total_display_str_height:
|
225 |
+
text_bottom = top
|
226 |
+
else:
|
227 |
+
text_bottom = bottom + total_display_str_height
|
228 |
+
# Reverse list and print from bottom to top.
|
229 |
+
for display_str in display_str_list[::-1]:
|
230 |
+
text_width, text_height = font.getsize(display_str)
|
231 |
+
margin = np.ceil(0.05 * text_height)
|
232 |
+
draw.rectangle(
|
233 |
+
[(left, text_bottom - text_height - 2 * margin), (left + text_width,
|
234 |
+
text_bottom)],
|
235 |
+
fill=color)
|
236 |
+
draw.text(
|
237 |
+
(left + margin, text_bottom - text_height - margin),
|
238 |
+
display_str,
|
239 |
+
fill='black',
|
240 |
+
font=font)
|
241 |
+
text_bottom -= text_height - 2 * margin
|
242 |
+
|
243 |
+
|
244 |
+
def draw_bounding_boxes_on_image_array(image,
|
245 |
+
boxes,
|
246 |
+
color='red',
|
247 |
+
thickness=4,
|
248 |
+
display_str_list_list=()):
|
249 |
+
"""Draws bounding boxes on image (numpy array).
|
250 |
+
|
251 |
+
Args:
|
252 |
+
image: a numpy array object.
|
253 |
+
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
|
254 |
+
The coordinates are in normalized format between [0, 1].
|
255 |
+
color: color to draw bounding box. Default is red.
|
256 |
+
thickness: line thickness. Default value is 4.
|
257 |
+
display_str_list_list: list of list of strings.
|
258 |
+
a list of strings for each bounding box.
|
259 |
+
The reason to pass a list of strings for a
|
260 |
+
bounding box is that it might contain
|
261 |
+
multiple labels.
|
262 |
+
|
263 |
+
Raises:
|
264 |
+
ValueError: if boxes is not a [N, 4] array
|
265 |
+
"""
|
266 |
+
image_pil = Image.fromarray(image)
|
267 |
+
draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
|
268 |
+
display_str_list_list)
|
269 |
+
np.copyto(image, np.array(image_pil))
|
270 |
+
|
271 |
+
|
272 |
+
def draw_bounding_boxes_on_image(image,
|
273 |
+
boxes,
|
274 |
+
color='red',
|
275 |
+
thickness=4,
|
276 |
+
display_str_list_list=()):
|
277 |
+
"""Draws bounding boxes on image.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
image: a PIL.Image object.
|
281 |
+
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
|
282 |
+
The coordinates are in normalized format between [0, 1].
|
283 |
+
color: color to draw bounding box. Default is red.
|
284 |
+
thickness: line thickness. Default value is 4.
|
285 |
+
display_str_list_list: list of list of strings.
|
286 |
+
a list of strings for each bounding box.
|
287 |
+
The reason to pass a list of strings for a
|
288 |
+
bounding box is that it might contain
|
289 |
+
multiple labels.
|
290 |
+
|
291 |
+
Raises:
|
292 |
+
ValueError: if boxes is not a [N, 4] array
|
293 |
+
"""
|
294 |
+
boxes_shape = boxes.shape
|
295 |
+
if not boxes_shape:
|
296 |
+
return
|
297 |
+
if len(boxes_shape) != 2 or boxes_shape[1] != 4:
|
298 |
+
raise ValueError('Input must be of size [N, 4]')
|
299 |
+
for i in range(boxes_shape[0]):
|
300 |
+
display_str_list = ()
|
301 |
+
if display_str_list_list:
|
302 |
+
display_str_list = display_str_list_list[i]
|
303 |
+
draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
|
304 |
+
boxes[i, 3], color, thickness, display_str_list)
|
305 |
+
|
306 |
+
|
307 |
+
def create_visualization_fn(category_index,
|
308 |
+
include_masks=False,
|
309 |
+
include_keypoints=False,
|
310 |
+
include_keypoint_scores=False,
|
311 |
+
include_track_ids=False,
|
312 |
+
**kwargs):
|
313 |
+
"""Constructs a visualization function that can be wrapped in a py_func.
|
314 |
+
|
315 |
+
py_funcs only accept positional arguments. This function returns a suitable
|
316 |
+
function with the correct positional argument mapping. The positional
|
317 |
+
arguments in order are:
|
318 |
+
0: image
|
319 |
+
1: boxes
|
320 |
+
2: classes
|
321 |
+
3: scores
|
322 |
+
[4]: masks (optional)
|
323 |
+
[4-5]: keypoints (optional)
|
324 |
+
[4-6]: keypoint_scores (optional)
|
325 |
+
[4-7]: track_ids (optional)
|
326 |
+
|
327 |
+
-- Example 1 --
|
328 |
+
vis_only_masks_fn = create_visualization_fn(category_index,
|
329 |
+
include_masks=True, include_keypoints=False, include_track_ids=False,
|
330 |
+
**kwargs)
|
331 |
+
image = tf.py_func(vis_only_masks_fn,
|
332 |
+
inp=[image, boxes, classes, scores, masks],
|
333 |
+
Tout=tf.uint8)
|
334 |
+
|
335 |
+
-- Example 2 --
|
336 |
+
vis_masks_and_track_ids_fn = create_visualization_fn(category_index,
|
337 |
+
include_masks=True, include_keypoints=False, include_track_ids=True,
|
338 |
+
**kwargs)
|
339 |
+
image = tf.py_func(vis_masks_and_track_ids_fn,
|
340 |
+
inp=[image, boxes, classes, scores, masks, track_ids],
|
341 |
+
Tout=tf.uint8)
|
342 |
+
|
343 |
+
Args:
|
344 |
+
category_index: a dict that maps integer ids to category dicts. e.g.
|
345 |
+
{1: {1: 'dog'}, 2: {2: 'cat'}, ...}
|
346 |
+
include_masks: Whether masks should be expected as a positional argument in
|
347 |
+
the returned function.
|
348 |
+
include_keypoints: Whether keypoints should be expected as a positional
|
349 |
+
argument in the returned function.
|
350 |
+
include_keypoint_scores: Whether keypoint scores should be expected as a
|
351 |
+
positional argument in the returned function.
|
352 |
+
include_track_ids: Whether track ids should be expected as a positional
|
353 |
+
argument in the returned function.
|
354 |
+
**kwargs: Additional kwargs that will be passed to
|
355 |
+
visualize_boxes_and_labels_on_image_array.
|
356 |
+
|
357 |
+
Returns:
|
358 |
+
Returns a function that only takes tensors as positional arguments.
|
359 |
+
"""
|
360 |
+
|
361 |
+
def visualization_py_func_fn(*args):
|
362 |
+
"""Visualization function that can be wrapped in a tf.py_func.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
*args: First 4 positional arguments must be:
|
366 |
+
image - uint8 numpy array with shape (img_height, img_width, 3).
|
367 |
+
boxes - a numpy array of shape [N, 4].
|
368 |
+
classes - a numpy array of shape [N].
|
369 |
+
scores - a numpy array of shape [N] or None.
|
370 |
+
-- Optional positional arguments --
|
371 |
+
instance_masks - a numpy array of shape [N, image_height, image_width].
|
372 |
+
keypoints - a numpy array of shape [N, num_keypoints, 2].
|
373 |
+
keypoint_scores - a numpy array of shape [N, num_keypoints].
|
374 |
+
track_ids - a numpy array of shape [N] with unique track ids.
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
uint8 numpy array with shape (img_height, img_width, 3) with overlaid
|
378 |
+
boxes.
|
379 |
+
"""
|
380 |
+
image = args[0]
|
381 |
+
boxes = args[1]
|
382 |
+
classes = args[2]
|
383 |
+
scores = args[3]
|
384 |
+
masks = keypoints = keypoint_scores = track_ids = None
|
385 |
+
pos_arg_ptr = 4 # Positional argument for first optional tensor (masks).
|
386 |
+
if include_masks:
|
387 |
+
masks = args[pos_arg_ptr]
|
388 |
+
pos_arg_ptr += 1
|
389 |
+
if include_keypoints:
|
390 |
+
keypoints = args[pos_arg_ptr]
|
391 |
+
pos_arg_ptr += 1
|
392 |
+
if include_keypoint_scores:
|
393 |
+
keypoint_scores = args[pos_arg_ptr]
|
394 |
+
pos_arg_ptr += 1
|
395 |
+
if include_track_ids:
|
396 |
+
track_ids = args[pos_arg_ptr]
|
397 |
+
|
398 |
+
return visualize_boxes_and_labels_on_image_array(
|
399 |
+
image,
|
400 |
+
boxes,
|
401 |
+
classes,
|
402 |
+
scores,
|
403 |
+
category_index=category_index,
|
404 |
+
instance_masks=masks,
|
405 |
+
keypoints=keypoints,
|
406 |
+
keypoint_scores=keypoint_scores,
|
407 |
+
track_ids=track_ids,
|
408 |
+
**kwargs)
|
409 |
+
return visualization_py_func_fn
|
410 |
+
|
411 |
+
|
412 |
+
def draw_heatmaps_on_image(image, heatmaps):
|
413 |
+
"""Draws heatmaps on an image.
|
414 |
+
|
415 |
+
The heatmaps are handled channel by channel and different colors are used to
|
416 |
+
paint different heatmap channels.
|
417 |
+
|
418 |
+
Args:
|
419 |
+
image: a PIL.Image object.
|
420 |
+
heatmaps: a numpy array with shape [image_height, image_width, channel].
|
421 |
+
Note that the image_height and image_width should match the size of input
|
422 |
+
image.
|
423 |
+
"""
|
424 |
+
draw = ImageDraw.Draw(image)
|
425 |
+
channel = heatmaps.shape[2]
|
426 |
+
for c in range(channel):
|
427 |
+
heatmap = heatmaps[:, :, c] * 255
|
428 |
+
heatmap = heatmap.astype('uint8')
|
429 |
+
bitmap = Image.fromarray(heatmap, 'L')
|
430 |
+
bitmap.convert('1')
|
431 |
+
draw.bitmap(
|
432 |
+
xy=[(0, 0)],
|
433 |
+
bitmap=bitmap,
|
434 |
+
fill=STANDARD_COLORS[c])
|
435 |
+
|
436 |
+
|
437 |
+
def draw_heatmaps_on_image_array(image, heatmaps):
|
438 |
+
"""Overlays heatmaps to an image (numpy array).
|
439 |
+
|
440 |
+
The function overlays the heatmaps on top of image. The heatmap values will be
|
441 |
+
painted with different colors depending on the channels. Similar to
|
442 |
+
"draw_heatmaps_on_image_array" function except the inputs are numpy arrays.
|
443 |
+
|
444 |
+
Args:
|
445 |
+
image: a numpy array with shape [height, width, 3].
|
446 |
+
heatmaps: a numpy array with shape [height, width, channel].
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
An uint8 numpy array representing the input image painted with heatmap
|
450 |
+
colors.
|
451 |
+
"""
|
452 |
+
if not isinstance(image, np.ndarray):
|
453 |
+
image = image.numpy()
|
454 |
+
if not isinstance(heatmaps, np.ndarray):
|
455 |
+
heatmaps = heatmaps.numpy()
|
456 |
+
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
|
457 |
+
draw_heatmaps_on_image(image_pil, heatmaps)
|
458 |
+
return np.array(image_pil)
|
459 |
+
|
460 |
+
|
461 |
+
def draw_heatmaps_on_image_tensors(images,
|
462 |
+
heatmaps,
|
463 |
+
apply_sigmoid=False):
|
464 |
+
"""Draws heatmaps on batch of image tensors.
|
465 |
+
|
466 |
+
Args:
|
467 |
+
images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
|
468 |
+
channels will be ignored. If C = 1, then we convert the images to RGB
|
469 |
+
images.
|
470 |
+
heatmaps: [N, h, w, channel] float32 tensor of heatmaps. Note that the
|
471 |
+
heatmaps will be resized to match the input image size before overlaying
|
472 |
+
the heatmaps with input images. Theoretically the heatmap height width
|
473 |
+
should have the same aspect ratio as the input image to avoid potential
|
474 |
+
misalignment introduced by the image resize.
|
475 |
+
apply_sigmoid: Whether to apply a sigmoid layer on top of the heatmaps. If
|
476 |
+
the heatmaps come directly from the prediction logits, then we should
|
477 |
+
apply the sigmoid layer to make sure the values are in between [0.0, 1.0].
|
478 |
+
|
479 |
+
Returns:
|
480 |
+
4D image tensor of type uint8, with heatmaps overlaid on top.
|
481 |
+
"""
|
482 |
+
# Additional channels are being ignored.
|
483 |
+
if images.shape[3] > 3:
|
484 |
+
images = images[:, :, :, 0:3]
|
485 |
+
elif images.shape[3] == 1:
|
486 |
+
images = tf.image.grayscale_to_rgb(images)
|
487 |
+
|
488 |
+
_, height, width, _ = shape_utils.combined_static_and_dynamic_shape(images)
|
489 |
+
if apply_sigmoid:
|
490 |
+
heatmaps = tf.math.sigmoid(heatmaps)
|
491 |
+
resized_heatmaps = tf.image.resize(heatmaps, size=[height, width])
|
492 |
+
|
493 |
+
elems = [images, resized_heatmaps]
|
494 |
+
|
495 |
+
def draw_heatmaps(image_and_heatmaps):
|
496 |
+
"""Draws heatmaps on image."""
|
497 |
+
image_with_heatmaps = tf.py_function(
|
498 |
+
draw_heatmaps_on_image_array,
|
499 |
+
image_and_heatmaps,
|
500 |
+
tf.uint8)
|
501 |
+
return image_with_heatmaps
|
502 |
+
images = tf.map_fn(draw_heatmaps, elems, dtype=tf.uint8, back_prop=False)
|
503 |
+
return images
|
504 |
+
|
505 |
+
|
506 |
+
def _resize_original_image(image, image_shape):
|
507 |
+
image = tf.expand_dims(image, 0)
|
508 |
+
image = tf.image.resize_images(
|
509 |
+
image,
|
510 |
+
image_shape,
|
511 |
+
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
|
512 |
+
align_corners=True)
|
513 |
+
return tf.cast(tf.squeeze(image, 0), tf.uint8)
|
514 |
+
|
515 |
+
|
516 |
+
def draw_bounding_boxes_on_image_tensors(images,
|
517 |
+
boxes,
|
518 |
+
classes,
|
519 |
+
scores,
|
520 |
+
category_index,
|
521 |
+
original_image_spatial_shape=None,
|
522 |
+
true_image_shape=None,
|
523 |
+
instance_masks=None,
|
524 |
+
keypoints=None,
|
525 |
+
keypoint_scores=None,
|
526 |
+
keypoint_edges=None,
|
527 |
+
track_ids=None,
|
528 |
+
max_boxes_to_draw=20,
|
529 |
+
min_score_thresh=0.2,
|
530 |
+
use_normalized_coordinates=True):
|
531 |
+
"""Draws bounding boxes, masks, and keypoints on batch of image tensors.
|
532 |
+
|
533 |
+
Args:
|
534 |
+
images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional
|
535 |
+
channels will be ignored. If C = 1, then we convert the images to RGB
|
536 |
+
images.
|
537 |
+
boxes: [N, max_detections, 4] float32 tensor of detection boxes.
|
538 |
+
classes: [N, max_detections] int tensor of detection classes. Note that
|
539 |
+
classes are 1-indexed.
|
540 |
+
scores: [N, max_detections] float32 tensor of detection scores.
|
541 |
+
category_index: a dict that maps integer ids to category dicts. e.g.
|
542 |
+
{1: {1: 'dog'}, 2: {2: 'cat'}, ...}
|
543 |
+
original_image_spatial_shape: [N, 2] tensor containing the spatial size of
|
544 |
+
the original image.
|
545 |
+
true_image_shape: [N, 3] tensor containing the spatial size of unpadded
|
546 |
+
original_image.
|
547 |
+
instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with
|
548 |
+
instance masks.
|
549 |
+
keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2]
|
550 |
+
with keypoints.
|
551 |
+
keypoint_scores: A 3D float32 tensor of shape [N, max_detection,
|
552 |
+
num_keypoints] with keypoint scores.
|
553 |
+
keypoint_edges: A list of tuples with keypoint indices that specify which
|
554 |
+
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
|
555 |
+
edges from keypoint 0 to 1 and from keypoint 2 to 4.
|
556 |
+
track_ids: [N, max_detections] int32 tensor of unique tracks ids (i.e.
|
557 |
+
instance ids for each object). If provided, the color-coding of boxes is
|
558 |
+
dictated by these ids, and not classes.
|
559 |
+
max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
|
560 |
+
min_score_thresh: Minimum score threshold for visualization. Default 0.2.
|
561 |
+
use_normalized_coordinates: Whether to assume boxes and kepoints are in
|
562 |
+
normalized coordinates (as opposed to absolute coordiantes).
|
563 |
+
Default is True.
|
564 |
+
|
565 |
+
Returns:
|
566 |
+
4D image tensor of type uint8, with boxes drawn on top.
|
567 |
+
"""
|
568 |
+
# Additional channels are being ignored.
|
569 |
+
if images.shape[3] > 3:
|
570 |
+
images = images[:, :, :, 0:3]
|
571 |
+
elif images.shape[3] == 1:
|
572 |
+
images = tf.image.grayscale_to_rgb(images)
|
573 |
+
visualization_keyword_args = {
|
574 |
+
'use_normalized_coordinates': use_normalized_coordinates,
|
575 |
+
'max_boxes_to_draw': max_boxes_to_draw,
|
576 |
+
'min_score_thresh': min_score_thresh,
|
577 |
+
'agnostic_mode': False,
|
578 |
+
'line_thickness': 4,
|
579 |
+
'keypoint_edges': keypoint_edges
|
580 |
+
}
|
581 |
+
if true_image_shape is None:
|
582 |
+
true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3])
|
583 |
+
else:
|
584 |
+
true_shapes = true_image_shape
|
585 |
+
if original_image_spatial_shape is None:
|
586 |
+
original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2])
|
587 |
+
else:
|
588 |
+
original_shapes = original_image_spatial_shape
|
589 |
+
|
590 |
+
visualize_boxes_fn = create_visualization_fn(
|
591 |
+
category_index,
|
592 |
+
include_masks=instance_masks is not None,
|
593 |
+
include_keypoints=keypoints is not None,
|
594 |
+
include_keypoint_scores=keypoint_scores is not None,
|
595 |
+
include_track_ids=track_ids is not None,
|
596 |
+
**visualization_keyword_args)
|
597 |
+
|
598 |
+
elems = [true_shapes, original_shapes, images, boxes, classes, scores]
|
599 |
+
if instance_masks is not None:
|
600 |
+
elems.append(instance_masks)
|
601 |
+
if keypoints is not None:
|
602 |
+
elems.append(keypoints)
|
603 |
+
if keypoint_scores is not None:
|
604 |
+
elems.append(keypoint_scores)
|
605 |
+
if track_ids is not None:
|
606 |
+
elems.append(track_ids)
|
607 |
+
|
608 |
+
def draw_boxes(image_and_detections):
|
609 |
+
"""Draws boxes on image."""
|
610 |
+
true_shape = image_and_detections[0]
|
611 |
+
original_shape = image_and_detections[1]
|
612 |
+
if true_image_shape is not None:
|
613 |
+
image = shape_utils.pad_or_clip_nd(image_and_detections[2],
|
614 |
+
[true_shape[0], true_shape[1], 3])
|
615 |
+
if original_image_spatial_shape is not None:
|
616 |
+
image_and_detections[2] = _resize_original_image(image, original_shape)
|
617 |
+
|
618 |
+
image_with_boxes = tf.py_func(visualize_boxes_fn, image_and_detections[2:],
|
619 |
+
tf.uint8)
|
620 |
+
return image_with_boxes
|
621 |
+
|
622 |
+
images = tf.map_fn(draw_boxes, elems, dtype=tf.uint8, back_prop=False)
|
623 |
+
return images
|
624 |
+
|
625 |
+
|
626 |
+
def draw_side_by_side_evaluation_image(eval_dict,
|
627 |
+
category_index,
|
628 |
+
max_boxes_to_draw=20,
|
629 |
+
min_score_thresh=0.2,
|
630 |
+
use_normalized_coordinates=True,
|
631 |
+
keypoint_edges=None):
|
632 |
+
"""Creates a side-by-side image with detections and groundtruth.
|
633 |
+
|
634 |
+
Bounding boxes (and instance masks, if available) are visualized on both
|
635 |
+
subimages.
|
636 |
+
|
637 |
+
Args:
|
638 |
+
eval_dict: The evaluation dictionary returned by
|
639 |
+
eval_util.result_dict_for_batched_example() or
|
640 |
+
eval_util.result_dict_for_single_example().
|
641 |
+
category_index: A category index (dictionary) produced from a labelmap.
|
642 |
+
max_boxes_to_draw: The maximum number of boxes to draw for detections.
|
643 |
+
min_score_thresh: The minimum score threshold for showing detections.
|
644 |
+
use_normalized_coordinates: Whether to assume boxes and keypoints are in
|
645 |
+
normalized coordinates (as opposed to absolute coordinates).
|
646 |
+
Default is True.
|
647 |
+
keypoint_edges: A list of tuples with keypoint indices that specify which
|
648 |
+
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
|
649 |
+
edges from keypoint 0 to 1 and from keypoint 2 to 4.
|
650 |
+
|
651 |
+
Returns:
|
652 |
+
A list of [1, H, 2 * W, C] uint8 tensor. The subimage on the left
|
653 |
+
corresponds to detections, while the subimage on the right corresponds to
|
654 |
+
groundtruth.
|
655 |
+
"""
|
656 |
+
detection_fields = fields.DetectionResultFields()
|
657 |
+
input_data_fields = fields.InputDataFields()
|
658 |
+
|
659 |
+
images_with_detections_list = []
|
660 |
+
|
661 |
+
# Add the batch dimension if the eval_dict is for single example.
|
662 |
+
if len(eval_dict[detection_fields.detection_classes].shape) == 1:
|
663 |
+
for key in eval_dict:
|
664 |
+
if (key != input_data_fields.original_image and
|
665 |
+
key != input_data_fields.image_additional_channels):
|
666 |
+
eval_dict[key] = tf.expand_dims(eval_dict[key], 0)
|
667 |
+
|
668 |
+
for indx in range(eval_dict[input_data_fields.original_image].shape[0]):
|
669 |
+
instance_masks = None
|
670 |
+
if detection_fields.detection_masks in eval_dict:
|
671 |
+
instance_masks = tf.cast(
|
672 |
+
tf.expand_dims(
|
673 |
+
eval_dict[detection_fields.detection_masks][indx], axis=0),
|
674 |
+
tf.uint8)
|
675 |
+
keypoints = None
|
676 |
+
keypoint_scores = None
|
677 |
+
if detection_fields.detection_keypoints in eval_dict:
|
678 |
+
keypoints = tf.expand_dims(
|
679 |
+
eval_dict[detection_fields.detection_keypoints][indx], axis=0)
|
680 |
+
if detection_fields.detection_keypoint_scores in eval_dict:
|
681 |
+
keypoint_scores = tf.expand_dims(
|
682 |
+
eval_dict[detection_fields.detection_keypoint_scores][indx], axis=0)
|
683 |
+
else:
|
684 |
+
keypoint_scores = tf.cast(keypoint_ops.set_keypoint_visibilities(
|
685 |
+
keypoints), dtype=tf.float32)
|
686 |
+
|
687 |
+
groundtruth_instance_masks = None
|
688 |
+
if input_data_fields.groundtruth_instance_masks in eval_dict:
|
689 |
+
groundtruth_instance_masks = tf.cast(
|
690 |
+
tf.expand_dims(
|
691 |
+
eval_dict[input_data_fields.groundtruth_instance_masks][indx],
|
692 |
+
axis=0), tf.uint8)
|
693 |
+
groundtruth_keypoints = None
|
694 |
+
groundtruth_keypoint_scores = None
|
695 |
+
gt_kpt_vis_fld = input_data_fields.groundtruth_keypoint_visibilities
|
696 |
+
if input_data_fields.groundtruth_keypoints in eval_dict:
|
697 |
+
groundtruth_keypoints = tf.expand_dims(
|
698 |
+
eval_dict[input_data_fields.groundtruth_keypoints][indx], axis=0)
|
699 |
+
if gt_kpt_vis_fld in eval_dict:
|
700 |
+
groundtruth_keypoint_scores = tf.expand_dims(
|
701 |
+
tf.cast(eval_dict[gt_kpt_vis_fld][indx], dtype=tf.float32), axis=0)
|
702 |
+
else:
|
703 |
+
groundtruth_keypoint_scores = tf.cast(
|
704 |
+
keypoint_ops.set_keypoint_visibilities(
|
705 |
+
groundtruth_keypoints), dtype=tf.float32)
|
706 |
+
|
707 |
+
images_with_detections = draw_bounding_boxes_on_image_tensors(
|
708 |
+
tf.expand_dims(
|
709 |
+
eval_dict[input_data_fields.original_image][indx], axis=0),
|
710 |
+
tf.expand_dims(
|
711 |
+
eval_dict[detection_fields.detection_boxes][indx], axis=0),
|
712 |
+
tf.expand_dims(
|
713 |
+
eval_dict[detection_fields.detection_classes][indx], axis=0),
|
714 |
+
tf.expand_dims(
|
715 |
+
eval_dict[detection_fields.detection_scores][indx], axis=0),
|
716 |
+
category_index,
|
717 |
+
original_image_spatial_shape=tf.expand_dims(
|
718 |
+
eval_dict[input_data_fields.original_image_spatial_shape][indx],
|
719 |
+
axis=0),
|
720 |
+
true_image_shape=tf.expand_dims(
|
721 |
+
eval_dict[input_data_fields.true_image_shape][indx], axis=0),
|
722 |
+
instance_masks=instance_masks,
|
723 |
+
keypoints=keypoints,
|
724 |
+
keypoint_scores=keypoint_scores,
|
725 |
+
keypoint_edges=keypoint_edges,
|
726 |
+
max_boxes_to_draw=max_boxes_to_draw,
|
727 |
+
min_score_thresh=min_score_thresh,
|
728 |
+
use_normalized_coordinates=use_normalized_coordinates)
|
729 |
+
images_with_groundtruth = draw_bounding_boxes_on_image_tensors(
|
730 |
+
tf.expand_dims(
|
731 |
+
eval_dict[input_data_fields.original_image][indx], axis=0),
|
732 |
+
tf.expand_dims(
|
733 |
+
eval_dict[input_data_fields.groundtruth_boxes][indx], axis=0),
|
734 |
+
tf.expand_dims(
|
735 |
+
eval_dict[input_data_fields.groundtruth_classes][indx], axis=0),
|
736 |
+
tf.expand_dims(
|
737 |
+
tf.ones_like(
|
738 |
+
eval_dict[input_data_fields.groundtruth_classes][indx],
|
739 |
+
dtype=tf.float32),
|
740 |
+
axis=0),
|
741 |
+
category_index,
|
742 |
+
original_image_spatial_shape=tf.expand_dims(
|
743 |
+
eval_dict[input_data_fields.original_image_spatial_shape][indx],
|
744 |
+
axis=0),
|
745 |
+
true_image_shape=tf.expand_dims(
|
746 |
+
eval_dict[input_data_fields.true_image_shape][indx], axis=0),
|
747 |
+
instance_masks=groundtruth_instance_masks,
|
748 |
+
keypoints=groundtruth_keypoints,
|
749 |
+
keypoint_scores=groundtruth_keypoint_scores,
|
750 |
+
keypoint_edges=keypoint_edges,
|
751 |
+
max_boxes_to_draw=None,
|
752 |
+
min_score_thresh=0.0,
|
753 |
+
use_normalized_coordinates=use_normalized_coordinates)
|
754 |
+
images_to_visualize = tf.concat([images_with_detections,
|
755 |
+
images_with_groundtruth], axis=2)
|
756 |
+
|
757 |
+
if input_data_fields.image_additional_channels in eval_dict:
|
758 |
+
images_with_additional_channels_groundtruth = (
|
759 |
+
draw_bounding_boxes_on_image_tensors(
|
760 |
+
tf.expand_dims(
|
761 |
+
eval_dict[input_data_fields.image_additional_channels][indx],
|
762 |
+
axis=0),
|
763 |
+
tf.expand_dims(
|
764 |
+
eval_dict[input_data_fields.groundtruth_boxes][indx], axis=0),
|
765 |
+
tf.expand_dims(
|
766 |
+
eval_dict[input_data_fields.groundtruth_classes][indx],
|
767 |
+
axis=0),
|
768 |
+
tf.expand_dims(
|
769 |
+
tf.ones_like(
|
770 |
+
eval_dict[input_data_fields.groundtruth_classes][indx],
|
771 |
+
dtype=tf.float32),
|
772 |
+
axis=0),
|
773 |
+
category_index,
|
774 |
+
original_image_spatial_shape=tf.expand_dims(
|
775 |
+
eval_dict[input_data_fields.original_image_spatial_shape]
|
776 |
+
[indx],
|
777 |
+
axis=0),
|
778 |
+
true_image_shape=tf.expand_dims(
|
779 |
+
eval_dict[input_data_fields.true_image_shape][indx], axis=0),
|
780 |
+
instance_masks=groundtruth_instance_masks,
|
781 |
+
keypoints=None,
|
782 |
+
keypoint_edges=None,
|
783 |
+
max_boxes_to_draw=None,
|
784 |
+
min_score_thresh=0.0,
|
785 |
+
use_normalized_coordinates=use_normalized_coordinates))
|
786 |
+
images_to_visualize = tf.concat(
|
787 |
+
[images_to_visualize, images_with_additional_channels_groundtruth],
|
788 |
+
axis=2)
|
789 |
+
images_with_detections_list.append(images_to_visualize)
|
790 |
+
|
791 |
+
return images_with_detections_list
|
792 |
+
|
793 |
+
|
794 |
+
def draw_keypoints_on_image_array(image,
|
795 |
+
keypoints,
|
796 |
+
keypoint_scores=None,
|
797 |
+
min_score_thresh=0.5,
|
798 |
+
color='red',
|
799 |
+
radius=2,
|
800 |
+
use_normalized_coordinates=True,
|
801 |
+
keypoint_edges=None,
|
802 |
+
keypoint_edge_color='green',
|
803 |
+
keypoint_edge_width=2):
|
804 |
+
"""Draws keypoints on an image (numpy array).
|
805 |
+
|
806 |
+
Args:
|
807 |
+
image: a numpy array with shape [height, width, 3].
|
808 |
+
keypoints: a numpy array with shape [num_keypoints, 2].
|
809 |
+
keypoint_scores: a numpy array with shape [num_keypoints]. If provided, only
|
810 |
+
those keypoints with a score above score_threshold will be visualized.
|
811 |
+
min_score_thresh: A scalar indicating the minimum keypoint score required
|
812 |
+
for a keypoint to be visualized. Note that keypoint_scores must be
|
813 |
+
provided for this threshold to take effect.
|
814 |
+
color: color to draw the keypoints with. Default is red.
|
815 |
+
radius: keypoint radius. Default value is 2.
|
816 |
+
use_normalized_coordinates: if True (default), treat keypoint values as
|
817 |
+
relative to the image. Otherwise treat them as absolute.
|
818 |
+
keypoint_edges: A list of tuples with keypoint indices that specify which
|
819 |
+
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
|
820 |
+
edges from keypoint 0 to 1 and from keypoint 2 to 4.
|
821 |
+
keypoint_edge_color: color to draw the keypoint edges with. Default is red.
|
822 |
+
keypoint_edge_width: width of the edges drawn between keypoints. Default
|
823 |
+
value is 2.
|
824 |
+
"""
|
825 |
+
image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
|
826 |
+
draw_keypoints_on_image(image_pil,
|
827 |
+
keypoints,
|
828 |
+
keypoint_scores=keypoint_scores,
|
829 |
+
min_score_thresh=min_score_thresh,
|
830 |
+
color=color,
|
831 |
+
radius=radius,
|
832 |
+
use_normalized_coordinates=use_normalized_coordinates,
|
833 |
+
keypoint_edges=keypoint_edges,
|
834 |
+
keypoint_edge_color=keypoint_edge_color,
|
835 |
+
keypoint_edge_width=keypoint_edge_width)
|
836 |
+
np.copyto(image, np.array(image_pil))
|
837 |
+
|
838 |
+
|
839 |
+
def draw_keypoints_on_image(image,
|
840 |
+
keypoints,
|
841 |
+
keypoint_scores=None,
|
842 |
+
min_score_thresh=0.5,
|
843 |
+
color='red',
|
844 |
+
radius=2,
|
845 |
+
use_normalized_coordinates=True,
|
846 |
+
keypoint_edges=None,
|
847 |
+
keypoint_edge_color='green',
|
848 |
+
keypoint_edge_width=2):
|
849 |
+
"""Draws keypoints on an image.
|
850 |
+
|
851 |
+
Args:
|
852 |
+
image: a PIL.Image object.
|
853 |
+
keypoints: a numpy array with shape [num_keypoints, 2].
|
854 |
+
keypoint_scores: a numpy array with shape [num_keypoints].
|
855 |
+
min_score_thresh: a score threshold for visualizing keypoints. Only used if
|
856 |
+
keypoint_scores is provided.
|
857 |
+
color: color to draw the keypoints with. Default is red.
|
858 |
+
radius: keypoint radius. Default value is 2.
|
859 |
+
use_normalized_coordinates: if True (default), treat keypoint values as
|
860 |
+
relative to the image. Otherwise treat them as absolute.
|
861 |
+
keypoint_edges: A list of tuples with keypoint indices that specify which
|
862 |
+
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
|
863 |
+
edges from keypoint 0 to 1 and from keypoint 2 to 4.
|
864 |
+
keypoint_edge_color: color to draw the keypoint edges with. Default is red.
|
865 |
+
keypoint_edge_width: width of the edges drawn between keypoints. Default
|
866 |
+
value is 2.
|
867 |
+
"""
|
868 |
+
draw = ImageDraw.Draw(image)
|
869 |
+
im_width, im_height = image.size
|
870 |
+
keypoints = np.array(keypoints)
|
871 |
+
keypoints_x = [k[1] for k in keypoints]
|
872 |
+
keypoints_y = [k[0] for k in keypoints]
|
873 |
+
if use_normalized_coordinates:
|
874 |
+
keypoints_x = tuple([im_width * x for x in keypoints_x])
|
875 |
+
keypoints_y = tuple([im_height * y for y in keypoints_y])
|
876 |
+
if keypoint_scores is not None:
|
877 |
+
keypoint_scores = np.array(keypoint_scores)
|
878 |
+
valid_kpt = np.greater(keypoint_scores, min_score_thresh)
|
879 |
+
else:
|
880 |
+
valid_kpt = np.where(np.any(np.isnan(keypoints), axis=1),
|
881 |
+
np.zeros_like(keypoints[:, 0]),
|
882 |
+
np.ones_like(keypoints[:, 0]))
|
883 |
+
valid_kpt = [v for v in valid_kpt]
|
884 |
+
|
885 |
+
for keypoint_x, keypoint_y, valid in zip(keypoints_x, keypoints_y, valid_kpt):
|
886 |
+
if valid:
|
887 |
+
draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
|
888 |
+
(keypoint_x + radius, keypoint_y + radius)],
|
889 |
+
outline=color, fill=color)
|
890 |
+
if keypoint_edges is not None:
|
891 |
+
for keypoint_start, keypoint_end in keypoint_edges:
|
892 |
+
if (keypoint_start < 0 or keypoint_start >= len(keypoints) or
|
893 |
+
keypoint_end < 0 or keypoint_end >= len(keypoints)):
|
894 |
+
continue
|
895 |
+
if not (valid_kpt[keypoint_start] and valid_kpt[keypoint_end]):
|
896 |
+
continue
|
897 |
+
edge_coordinates = [
|
898 |
+
keypoints_x[keypoint_start], keypoints_y[keypoint_start],
|
899 |
+
keypoints_x[keypoint_end], keypoints_y[keypoint_end]
|
900 |
+
]
|
901 |
+
draw.line(
|
902 |
+
edge_coordinates, fill=keypoint_edge_color, width=keypoint_edge_width)
|
903 |
+
|
904 |
+
|
905 |
+
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
|
906 |
+
"""Draws mask on an image.
|
907 |
+
|
908 |
+
Args:
|
909 |
+
image: uint8 numpy array with shape (img_height, img_height, 3)
|
910 |
+
mask: a uint8 numpy array of shape (img_height, img_height) with
|
911 |
+
values between either 0 or 1.
|
912 |
+
color: color to draw the keypoints with. Default is red.
|
913 |
+
alpha: transparency value between 0 and 1. (default: 0.4)
|
914 |
+
|
915 |
+
Raises:
|
916 |
+
ValueError: On incorrect data type for image or masks.
|
917 |
+
"""
|
918 |
+
if image.dtype != np.uint8:
|
919 |
+
raise ValueError('`image` not of type np.uint8')
|
920 |
+
if mask.dtype != np.uint8:
|
921 |
+
raise ValueError('`mask` not of type np.uint8')
|
922 |
+
if np.any(np.logical_and(mask != 1, mask != 0)):
|
923 |
+
raise ValueError('`mask` elements should be in [0, 1]')
|
924 |
+
if image.shape[:2] != mask.shape:
|
925 |
+
raise ValueError('The image has spatial dimensions %s but the mask has '
|
926 |
+
'dimensions %s' % (image.shape[:2], mask.shape))
|
927 |
+
rgb = ImageColor.getrgb(color)
|
928 |
+
pil_image = Image.fromarray(image)
|
929 |
+
|
930 |
+
solid_color = np.expand_dims(
|
931 |
+
np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
|
932 |
+
pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
|
933 |
+
pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
|
934 |
+
pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
|
935 |
+
np.copyto(image, np.array(pil_image.convert('RGB')))
|
936 |
+
|
937 |
+
|
938 |
+
def visualize_boxes_and_labels_on_image_array(
|
939 |
+
image,
|
940 |
+
boxes,
|
941 |
+
classes,
|
942 |
+
scores,
|
943 |
+
category_index,
|
944 |
+
instance_masks=None,
|
945 |
+
instance_boundaries=None,
|
946 |
+
keypoints=None,
|
947 |
+
keypoint_scores=None,
|
948 |
+
keypoint_edges=None,
|
949 |
+
track_ids=None,
|
950 |
+
use_normalized_coordinates=False,
|
951 |
+
max_boxes_to_draw=20,
|
952 |
+
min_score_thresh=.5,
|
953 |
+
agnostic_mode=False,
|
954 |
+
line_thickness=4,
|
955 |
+
groundtruth_box_visualization_color='black',
|
956 |
+
skip_boxes=False,
|
957 |
+
skip_scores=False,
|
958 |
+
skip_labels=False,
|
959 |
+
skip_track_ids=False):
|
960 |
+
"""Overlay labeled boxes on an image with formatted scores and label names.
|
961 |
+
|
962 |
+
This function groups boxes that correspond to the same location
|
963 |
+
and creates a display string for each detection and overlays these
|
964 |
+
on the image. Note that this function modifies the image in place, and returns
|
965 |
+
that same image.
|
966 |
+
|
967 |
+
Args:
|
968 |
+
image: uint8 numpy array with shape (img_height, img_width, 3)
|
969 |
+
boxes: a numpy array of shape [N, 4]
|
970 |
+
classes: a numpy array of shape [N]. Note that class indices are 1-based,
|
971 |
+
and match the keys in the label map.
|
972 |
+
scores: a numpy array of shape [N] or None. If scores=None, then
|
973 |
+
this function assumes that the boxes to be plotted are groundtruth
|
974 |
+
boxes and plot all boxes as black with no classes or scores.
|
975 |
+
category_index: a dict containing category dictionaries (each holding
|
976 |
+
category index `id` and category name `name`) keyed by category indices.
|
977 |
+
instance_masks: a numpy array of shape [N, image_height, image_width] with
|
978 |
+
values ranging between 0 and 1, can be None.
|
979 |
+
instance_boundaries: a numpy array of shape [N, image_height, image_width]
|
980 |
+
with values ranging between 0 and 1, can be None.
|
981 |
+
keypoints: a numpy array of shape [N, num_keypoints, 2], can
|
982 |
+
be None.
|
983 |
+
keypoint_scores: a numpy array of shape [N, num_keypoints], can be None.
|
984 |
+
keypoint_edges: A list of tuples with keypoint indices that specify which
|
985 |
+
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
|
986 |
+
edges from keypoint 0 to 1 and from keypoint 2 to 4.
|
987 |
+
track_ids: a numpy array of shape [N] with unique track ids. If provided,
|
988 |
+
color-coding of boxes will be determined by these ids, and not the class
|
989 |
+
indices.
|
990 |
+
use_normalized_coordinates: whether boxes is to be interpreted as
|
991 |
+
normalized coordinates or not.
|
992 |
+
max_boxes_to_draw: maximum number of boxes to visualize. If None, draw
|
993 |
+
all boxes.
|
994 |
+
min_score_thresh: minimum score threshold for a box or keypoint to be
|
995 |
+
visualized.
|
996 |
+
agnostic_mode: boolean (default: False) controlling whether to evaluate in
|
997 |
+
class-agnostic mode or not. This mode will display scores but ignore
|
998 |
+
classes.
|
999 |
+
line_thickness: integer (default: 4) controlling line width of the boxes.
|
1000 |
+
groundtruth_box_visualization_color: box color for visualizing groundtruth
|
1001 |
+
boxes
|
1002 |
+
skip_boxes: whether to skip the drawing of bounding boxes.
|
1003 |
+
skip_scores: whether to skip score when drawing a single detection
|
1004 |
+
skip_labels: whether to skip label when drawing a single detection
|
1005 |
+
skip_track_ids: whether to skip track id when drawing a single detection
|
1006 |
+
|
1007 |
+
Returns:
|
1008 |
+
uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
|
1009 |
+
"""
|
1010 |
+
# Create a display string (and color) for every box location, group any boxes
|
1011 |
+
# that correspond to the same location.
|
1012 |
+
box_to_display_str_map = collections.defaultdict(list)
|
1013 |
+
box_to_color_map = collections.defaultdict(str)
|
1014 |
+
box_to_instance_masks_map = {}
|
1015 |
+
box_to_instance_boundaries_map = {}
|
1016 |
+
box_to_keypoints_map = collections.defaultdict(list)
|
1017 |
+
box_to_keypoint_scores_map = collections.defaultdict(list)
|
1018 |
+
box_to_track_ids_map = {}
|
1019 |
+
if not max_boxes_to_draw:
|
1020 |
+
max_boxes_to_draw = boxes.shape[0]
|
1021 |
+
for i in range(boxes.shape[0]):
|
1022 |
+
if max_boxes_to_draw == len(box_to_color_map):
|
1023 |
+
break
|
1024 |
+
if scores is None or scores[i] > min_score_thresh:
|
1025 |
+
box = tuple(boxes[i].tolist())
|
1026 |
+
if instance_masks is not None:
|
1027 |
+
box_to_instance_masks_map[box] = instance_masks[i]
|
1028 |
+
if instance_boundaries is not None:
|
1029 |
+
box_to_instance_boundaries_map[box] = instance_boundaries[i]
|
1030 |
+
if keypoints is not None:
|
1031 |
+
box_to_keypoints_map[box].extend(keypoints[i])
|
1032 |
+
if keypoint_scores is not None:
|
1033 |
+
box_to_keypoint_scores_map[box].extend(keypoint_scores[i])
|
1034 |
+
if track_ids is not None:
|
1035 |
+
box_to_track_ids_map[box] = track_ids[i]
|
1036 |
+
if scores is None:
|
1037 |
+
box_to_color_map[box] = groundtruth_box_visualization_color
|
1038 |
+
else:
|
1039 |
+
display_str = ''
|
1040 |
+
if not skip_labels:
|
1041 |
+
if not agnostic_mode:
|
1042 |
+
if classes[i] in six.viewkeys(category_index):
|
1043 |
+
class_name = category_index[classes[i]]['name']
|
1044 |
+
else:
|
1045 |
+
class_name = 'N/A'
|
1046 |
+
display_str = str(class_name)
|
1047 |
+
if not skip_scores:
|
1048 |
+
if not display_str:
|
1049 |
+
display_str = '{}%'.format(round(100*scores[i]))
|
1050 |
+
else:
|
1051 |
+
display_str = '{}: {}%'.format(display_str, round(100*scores[i]))
|
1052 |
+
if not skip_track_ids and track_ids is not None:
|
1053 |
+
if not display_str:
|
1054 |
+
display_str = 'ID {}'.format(track_ids[i])
|
1055 |
+
else:
|
1056 |
+
display_str = '{}: ID {}'.format(display_str, track_ids[i])
|
1057 |
+
box_to_display_str_map[box].append(display_str)
|
1058 |
+
if agnostic_mode:
|
1059 |
+
box_to_color_map[box] = 'DarkOrange'
|
1060 |
+
elif track_ids is not None:
|
1061 |
+
prime_multipler = _get_multiplier_for_color_randomness()
|
1062 |
+
box_to_color_map[box] = STANDARD_COLORS[
|
1063 |
+
(prime_multipler * track_ids[i]) % len(STANDARD_COLORS)]
|
1064 |
+
else:
|
1065 |
+
box_to_color_map[box] = STANDARD_COLORS[
|
1066 |
+
classes[i] % len(STANDARD_COLORS)]
|
1067 |
+
|
1068 |
+
# Draw all boxes onto image.
|
1069 |
+
for box, color in box_to_color_map.items():
|
1070 |
+
ymin, xmin, ymax, xmax = box
|
1071 |
+
#print("Box---------------->",box)
|
1072 |
+
if instance_masks is not None:
|
1073 |
+
draw_mask_on_image_array(
|
1074 |
+
image,
|
1075 |
+
box_to_instance_masks_map[box],
|
1076 |
+
color=color
|
1077 |
+
)
|
1078 |
+
if instance_boundaries is not None:
|
1079 |
+
draw_mask_on_image_array(
|
1080 |
+
image,
|
1081 |
+
box_to_instance_boundaries_map[box],
|
1082 |
+
color='red',
|
1083 |
+
alpha=1.0
|
1084 |
+
)
|
1085 |
+
draw_bounding_box_on_image_array(
|
1086 |
+
image,
|
1087 |
+
ymin,
|
1088 |
+
xmin,
|
1089 |
+
ymax,
|
1090 |
+
xmax,
|
1091 |
+
color=color,
|
1092 |
+
thickness=0 if skip_boxes else line_thickness,
|
1093 |
+
display_str_list=box_to_display_str_map[box],
|
1094 |
+
use_normalized_coordinates=use_normalized_coordinates)
|
1095 |
+
if keypoints is not None:
|
1096 |
+
keypoint_scores_for_box = None
|
1097 |
+
if box_to_keypoint_scores_map:
|
1098 |
+
keypoint_scores_for_box = box_to_keypoint_scores_map[box]
|
1099 |
+
draw_keypoints_on_image_array(
|
1100 |
+
image,
|
1101 |
+
box_to_keypoints_map[box],
|
1102 |
+
keypoint_scores_for_box,
|
1103 |
+
min_score_thresh=min_score_thresh,
|
1104 |
+
color=color,
|
1105 |
+
radius=line_thickness / 2,
|
1106 |
+
use_normalized_coordinates=use_normalized_coordinates,
|
1107 |
+
keypoint_edges=keypoint_edges,
|
1108 |
+
keypoint_edge_color=color,
|
1109 |
+
keypoint_edge_width=line_thickness // 2)
|
1110 |
+
|
1111 |
+
return image
|
1112 |
+
|
1113 |
+
|
1114 |
+
def add_cdf_image_summary(values, name):
|
1115 |
+
"""Adds a tf.summary.image for a CDF plot of the values.
|
1116 |
+
|
1117 |
+
Normalizes `values` such that they sum to 1, plots the cumulative distribution
|
1118 |
+
function and creates a tf image summary.
|
1119 |
+
|
1120 |
+
Args:
|
1121 |
+
values: a 1-D float32 tensor containing the values.
|
1122 |
+
name: name for the image summary.
|
1123 |
+
"""
|
1124 |
+
def cdf_plot(values):
|
1125 |
+
"""Numpy function to plot CDF."""
|
1126 |
+
normalized_values = values / np.sum(values)
|
1127 |
+
sorted_values = np.sort(normalized_values)
|
1128 |
+
cumulative_values = np.cumsum(sorted_values)
|
1129 |
+
fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32)
|
1130 |
+
/ cumulative_values.size)
|
1131 |
+
fig = plt.figure(frameon=False)
|
1132 |
+
ax = fig.add_subplot('111')
|
1133 |
+
ax.plot(fraction_of_examples, cumulative_values)
|
1134 |
+
ax.set_ylabel('cumulative normalized values')
|
1135 |
+
ax.set_xlabel('fraction of examples')
|
1136 |
+
fig.canvas.draw()
|
1137 |
+
width, height = fig.get_size_inches() * fig.get_dpi()
|
1138 |
+
image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(
|
1139 |
+
1, int(height), int(width), 3)
|
1140 |
+
return image
|
1141 |
+
cdf_plot = tf.py_func(cdf_plot, [values], tf.uint8)
|
1142 |
+
tf.summary.image(name, cdf_plot)
|
1143 |
+
|
1144 |
+
|
1145 |
+
def add_hist_image_summary(values, bins, name):
|
1146 |
+
"""Adds a tf.summary.image for a histogram plot of the values.
|
1147 |
+
|
1148 |
+
Plots the histogram of values and creates a tf image summary.
|
1149 |
+
|
1150 |
+
Args:
|
1151 |
+
values: a 1-D float32 tensor containing the values.
|
1152 |
+
bins: bin edges which will be directly passed to np.histogram.
|
1153 |
+
name: name for the image summary.
|
1154 |
+
"""
|
1155 |
+
|
1156 |
+
def hist_plot(values, bins):
|
1157 |
+
"""Numpy function to plot hist."""
|
1158 |
+
fig = plt.figure(frameon=False)
|
1159 |
+
ax = fig.add_subplot('111')
|
1160 |
+
y, x = np.histogram(values, bins=bins)
|
1161 |
+
ax.plot(x[:-1], y)
|
1162 |
+
ax.set_ylabel('count')
|
1163 |
+
ax.set_xlabel('value')
|
1164 |
+
fig.canvas.draw()
|
1165 |
+
width, height = fig.get_size_inches() * fig.get_dpi()
|
1166 |
+
image = np.fromstring(
|
1167 |
+
fig.canvas.tostring_rgb(), dtype='uint8').reshape(
|
1168 |
+
1, int(height), int(width), 3)
|
1169 |
+
return image
|
1170 |
+
hist_plot = tf.py_func(hist_plot, [values, bins], tf.uint8)
|
1171 |
+
tf.summary.image(name, hist_plot)
|
1172 |
+
|
1173 |
+
|
1174 |
+
class EvalMetricOpsVisualization(six.with_metaclass(abc.ABCMeta, object)):
|
1175 |
+
"""Abstract base class responsible for visualizations during evaluation.
|
1176 |
+
|
1177 |
+
Currently, summary images are not run during evaluation. One way to produce
|
1178 |
+
evaluation images in Tensorboard is to provide tf.summary.image strings as
|
1179 |
+
`value_ops` in tf.estimator.EstimatorSpec's `eval_metric_ops`. This class is
|
1180 |
+
responsible for accruing images (with overlaid detections and groundtruth)
|
1181 |
+
and returning a dictionary that can be passed to `eval_metric_ops`.
|
1182 |
+
"""
|
1183 |
+
|
1184 |
+
def __init__(self,
|
1185 |
+
category_index,
|
1186 |
+
max_examples_to_draw=5,
|
1187 |
+
max_boxes_to_draw=20,
|
1188 |
+
min_score_thresh=0.2,
|
1189 |
+
use_normalized_coordinates=True,
|
1190 |
+
summary_name_prefix='evaluation_image',
|
1191 |
+
keypoint_edges=None):
|
1192 |
+
"""Creates an EvalMetricOpsVisualization.
|
1193 |
+
|
1194 |
+
Args:
|
1195 |
+
category_index: A category index (dictionary) produced from a labelmap.
|
1196 |
+
max_examples_to_draw: The maximum number of example summaries to produce.
|
1197 |
+
max_boxes_to_draw: The maximum number of boxes to draw for detections.
|
1198 |
+
min_score_thresh: The minimum score threshold for showing detections.
|
1199 |
+
use_normalized_coordinates: Whether to assume boxes and keypoints are in
|
1200 |
+
normalized coordinates (as opposed to absolute coordinates).
|
1201 |
+
Default is True.
|
1202 |
+
summary_name_prefix: A string prefix for each image summary.
|
1203 |
+
keypoint_edges: A list of tuples with keypoint indices that specify which
|
1204 |
+
keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
|
1205 |
+
edges from keypoint 0 to 1 and from keypoint 2 to 4.
|
1206 |
+
"""
|
1207 |
+
|
1208 |
+
self._category_index = category_index
|
1209 |
+
self._max_examples_to_draw = max_examples_to_draw
|
1210 |
+
self._max_boxes_to_draw = max_boxes_to_draw
|
1211 |
+
self._min_score_thresh = min_score_thresh
|
1212 |
+
self._use_normalized_coordinates = use_normalized_coordinates
|
1213 |
+
self._summary_name_prefix = summary_name_prefix
|
1214 |
+
self._keypoint_edges = keypoint_edges
|
1215 |
+
self._images = []
|
1216 |
+
|
1217 |
+
def clear(self):
|
1218 |
+
self._images = []
|
1219 |
+
|
1220 |
+
def add_images(self, images):
|
1221 |
+
"""Store a list of images, each with shape [1, H, W, C]."""
|
1222 |
+
if len(self._images) >= self._max_examples_to_draw:
|
1223 |
+
return
|
1224 |
+
|
1225 |
+
# Store images and clip list if necessary.
|
1226 |
+
self._images.extend(images)
|
1227 |
+
if len(self._images) > self._max_examples_to_draw:
|
1228 |
+
self._images[self._max_examples_to_draw:] = []
|
1229 |
+
|
1230 |
+
def get_estimator_eval_metric_ops(self, eval_dict):
|
1231 |
+
"""Returns metric ops for use in tf.estimator.EstimatorSpec.
|
1232 |
+
|
1233 |
+
Args:
|
1234 |
+
eval_dict: A dictionary that holds an image, groundtruth, and detections
|
1235 |
+
for a batched example. Note that, we use only the first example for
|
1236 |
+
visualization. See eval_util.result_dict_for_batched_example() for a
|
1237 |
+
convenient method for constructing such a dictionary. The dictionary
|
1238 |
+
contains
|
1239 |
+
fields.InputDataFields.original_image: [batch_size, H, W, 3] image.
|
1240 |
+
fields.InputDataFields.original_image_spatial_shape: [batch_size, 2]
|
1241 |
+
tensor containing the size of the original image.
|
1242 |
+
fields.InputDataFields.true_image_shape: [batch_size, 3]
|
1243 |
+
tensor containing the spatial size of the upadded original image.
|
1244 |
+
fields.InputDataFields.groundtruth_boxes - [batch_size, num_boxes, 4]
|
1245 |
+
float32 tensor with groundtruth boxes in range [0.0, 1.0].
|
1246 |
+
fields.InputDataFields.groundtruth_classes - [batch_size, num_boxes]
|
1247 |
+
int64 tensor with 1-indexed groundtruth classes.
|
1248 |
+
fields.InputDataFields.groundtruth_instance_masks - (optional)
|
1249 |
+
[batch_size, num_boxes, H, W] int64 tensor with instance masks.
|
1250 |
+
fields.InputDataFields.groundtruth_keypoints - (optional)
|
1251 |
+
[batch_size, num_boxes, num_keypoints, 2] float32 tensor with
|
1252 |
+
keypoint coordinates in format [y, x].
|
1253 |
+
fields.InputDataFields.groundtruth_keypoint_visibilities - (optional)
|
1254 |
+
[batch_size, num_boxes, num_keypoints] bool tensor with
|
1255 |
+
keypoint visibilities.
|
1256 |
+
fields.DetectionResultFields.detection_boxes - [batch_size,
|
1257 |
+
max_num_boxes, 4] float32 tensor with detection boxes in range [0.0,
|
1258 |
+
1.0].
|
1259 |
+
fields.DetectionResultFields.detection_classes - [batch_size,
|
1260 |
+
max_num_boxes] int64 tensor with 1-indexed detection classes.
|
1261 |
+
fields.DetectionResultFields.detection_scores - [batch_size,
|
1262 |
+
max_num_boxes] float32 tensor with detection scores.
|
1263 |
+
fields.DetectionResultFields.detection_masks - (optional) [batch_size,
|
1264 |
+
max_num_boxes, H, W] float32 tensor of binarized masks.
|
1265 |
+
fields.DetectionResultFields.detection_keypoints - (optional)
|
1266 |
+
[batch_size, max_num_boxes, num_keypoints, 2] float32 tensor with
|
1267 |
+
keypoints.
|
1268 |
+
fields.DetectionResultFields.detection_keypoint_scores - (optional)
|
1269 |
+
[batch_size, max_num_boxes, num_keypoints] float32 tensor with
|
1270 |
+
keypoints scores.
|
1271 |
+
|
1272 |
+
Returns:
|
1273 |
+
A dictionary of image summary names to tuple of (value_op, update_op). The
|
1274 |
+
`update_op` is the same for all items in the dictionary, and is
|
1275 |
+
responsible for saving a single side-by-side image with detections and
|
1276 |
+
groundtruth. Each `value_op` holds the tf.summary.image string for a given
|
1277 |
+
image.
|
1278 |
+
"""
|
1279 |
+
if self._max_examples_to_draw == 0:
|
1280 |
+
return {}
|
1281 |
+
images = self.images_from_evaluation_dict(eval_dict)
|
1282 |
+
|
1283 |
+
def get_images():
|
1284 |
+
"""Returns a list of images, padded to self._max_images_to_draw."""
|
1285 |
+
images = self._images
|
1286 |
+
while len(images) < self._max_examples_to_draw:
|
1287 |
+
images.append(np.array(0, dtype=np.uint8))
|
1288 |
+
self.clear()
|
1289 |
+
return images
|
1290 |
+
|
1291 |
+
def image_summary_or_default_string(summary_name, image):
|
1292 |
+
"""Returns image summaries for non-padded elements."""
|
1293 |
+
return tf.cond(
|
1294 |
+
tf.equal(tf.size(tf.shape(image)), 4),
|
1295 |
+
lambda: tf.summary.image(summary_name, image),
|
1296 |
+
lambda: tf.constant(''))
|
1297 |
+
|
1298 |
+
if tf.executing_eagerly():
|
1299 |
+
update_op = self.add_images([[images[0]]])
|
1300 |
+
image_tensors = get_images()
|
1301 |
+
else:
|
1302 |
+
update_op = tf.py_func(self.add_images, [[images[0]]], [])
|
1303 |
+
image_tensors = tf.py_func(
|
1304 |
+
get_images, [], [tf.uint8] * self._max_examples_to_draw)
|
1305 |
+
eval_metric_ops = {}
|
1306 |
+
for i, image in enumerate(image_tensors):
|
1307 |
+
summary_name = self._summary_name_prefix + '/' + str(i)
|
1308 |
+
value_op = image_summary_or_default_string(summary_name, image)
|
1309 |
+
eval_metric_ops[summary_name] = (value_op, update_op)
|
1310 |
+
return eval_metric_ops
|
1311 |
+
|
1312 |
+
@abc.abstractmethod
|
1313 |
+
def images_from_evaluation_dict(self, eval_dict):
|
1314 |
+
"""Converts evaluation dictionary into a list of image tensors.
|
1315 |
+
|
1316 |
+
To be overridden by implementations.
|
1317 |
+
|
1318 |
+
Args:
|
1319 |
+
eval_dict: A dictionary with all the necessary information for producing
|
1320 |
+
visualizations.
|
1321 |
+
|
1322 |
+
Returns:
|
1323 |
+
A list of [1, H, W, C] uint8 tensors.
|
1324 |
+
"""
|
1325 |
+
raise NotImplementedError
|
1326 |
+
|
1327 |
+
|
1328 |
+
class VisualizeSingleFrameDetections(EvalMetricOpsVisualization):
|
1329 |
+
"""Class responsible for single-frame object detection visualizations."""
|
1330 |
+
|
1331 |
+
def __init__(self,
|
1332 |
+
category_index,
|
1333 |
+
max_examples_to_draw=5,
|
1334 |
+
max_boxes_to_draw=20,
|
1335 |
+
min_score_thresh=0.2,
|
1336 |
+
use_normalized_coordinates=True,
|
1337 |
+
summary_name_prefix='Detections_Left_Groundtruth_Right',
|
1338 |
+
keypoint_edges=None):
|
1339 |
+
super(VisualizeSingleFrameDetections, self).__init__(
|
1340 |
+
category_index=category_index,
|
1341 |
+
max_examples_to_draw=max_examples_to_draw,
|
1342 |
+
max_boxes_to_draw=max_boxes_to_draw,
|
1343 |
+
min_score_thresh=min_score_thresh,
|
1344 |
+
use_normalized_coordinates=use_normalized_coordinates,
|
1345 |
+
summary_name_prefix=summary_name_prefix,
|
1346 |
+
keypoint_edges=keypoint_edges)
|
1347 |
+
|
1348 |
+
def images_from_evaluation_dict(self, eval_dict):
|
1349 |
+
return draw_side_by_side_evaluation_image(eval_dict, self._category_index,
|
1350 |
+
self._max_boxes_to_draw,
|
1351 |
+
self._min_score_thresh,
|
1352 |
+
self._use_normalized_coordinates,
|
1353 |
+
self._keypoint_edges)
|