Priyanka-Kumavat-At-TE's picture
Upload 19 files
2fc2c1f
raw
history blame
23.9 kB
#!/usr/local/bin/python3
# avenir-python: Machine Learning
# Author: Pranab Ghosh
#
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# Package imports
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset, TensorDataset
from torch.utils.data import DataLoader
import sklearn as sk
from sklearn.neighbors import KDTree
import matplotlib
import random
import jprops
from random import randint
import statistics
sys.path.append(os.path.abspath("../lib"))
from util import *
from mlutil import *
"""
forward hook function
"""
intermedOut = {}
lvalues = list()
def hookFn(m, i, o):
"""
call back for latent values
"""
#intermedOut[m] = o
lv = o.data.cpu().numpy()
lv = lv[0].tolist()
lvalues.append(lv)
#print(lv)
def getLatValues():
"""
"""
return lvalues
class FeedForwardNetwork(torch.nn.Module):
def __init__(self, configFile, addDefValues=None):
"""
In the constructor we instantiate two nn.Linear modules and assign them as
member variables.
Parameters
configFile : config file path
addDefValues : dictionary of additional default values
"""
defValues = dict() if addDefValues is None else addDefValues.copy()
defValues["common.mode"] = ("training", None)
defValues["common.model.directory"] = ("model", None)
defValues["common.model.file"] = (None, None)
defValues["common.preprocessing"] = (None, None)
defValues["common.scaling.method"] = ("zscale", None)
defValues["common.scaling.minrows"] = (50, None)
defValues["common.scaling.param.file"] = (None, None)
defValues["common.verbose"] = (False, None)
defValues["common.device"] = ("cpu", None)
defValues["train.data.file"] = (None, "missing training data file")
defValues["train.data.fields"] = (None, "missing training data field ordinals")
defValues["train.data.feature.fields"] = (None, "missing training data feature field ordinals")
defValues["train.data.out.fields"] = (None, "missing training data feature field ordinals")
defValues["train.layer.data"] = (None, "missing layer data")
defValues["train.input.size"] = (None, None)
defValues["train.output.size"] = (None, "missing output size")
defValues["train.batch.size"] = (10, None)
defValues["train.loss.reduction"] = ("mean", None)
defValues["train.num.iterations"] = (500, None)
defValues["train.lossFn"] = ("mse", None)
defValues["train.optimizer"] = ("sgd", None)
defValues["train.opt.learning.rate"] = (.0001, None)
defValues["train.opt.weight.decay"] = (0, None)
defValues["train.opt.momentum"] = (0, None)
defValues["train.opt.eps"] = (1e-08, None)
defValues["train.opt.dampening"] = (0, None)
defValues["train.opt.momentum.nesterov"] = (False, None)
defValues["train.opt.betas"] = ([0.9, 0.999], None)
defValues["train.opt.alpha"] = (0.99, None)
defValues["train.save.model"] = (False, None)
defValues["train.track.error"] = (False, None)
defValues["train.epoch.intv"] = (5, None)
defValues["train.batch.intv"] = (5, None)
defValues["train.print.weights"] = (False, None)
defValues["valid.data.file"] = (None, None)
defValues["valid.accuracy.metric"] = (None, None)
defValues["predict.data.file"] = (None, None)
defValues["predict.use.saved.model"] = (True, None)
defValues["predict.output"] = ("binary", None)
defValues["predict.feat.pad.size"] = (60, None)
defValues["predict.print.output"] = (True, None)
defValues["calibrate.num.bins"] = (10, None)
defValues["calibrate.pred.prob.thresh"] = (0.5, None)
defValues["calibrate.num.nearest.neighbors"] = (10, None)
self.config = Configuration(configFile, defValues)
super(FeedForwardNetwork, self).__init__()
def setConfigParam(self, name, value):
"""
set config param
Parameters
name : config name
value : config value
"""
self.config.setParam(name, value)
def getConfig(self):
"""
get config object
"""
return self.config
def setVerbose(self, verbose):
self.verbose = verbose
def buildModel(self):
"""
Loads configuration and builds the various piecess necessary for the model
"""
torch.manual_seed(9999)
self.verbose = self.config.getBooleanConfig("common.verbose")[0]
numinp = self.config.getIntConfig("train.input.size")[0]
if numinp is None:
numinp = len(self.config.getIntListConfig("train.data.feature.fields")[0])
#numOut = len(self.config.getStringConfig("train.data.out.fields")[0].split(","))
self.outputSize = self.config.getIntConfig("train.output.size")[0]
self.batchSize = self.config.getIntConfig("train.batch.size")[0]
#lossRed = self.config.getStringConfig("train.loss.reduction")[0]
#learnRate = self.config.getFloatConfig("train.opt.learning.rate")[0]
self.numIter = self.config.getIntConfig("train.num.iterations")[0]
optimizer = self.config.getStringConfig("train.optimizer")[0]
self.lossFnStr = self.config.getStringConfig("train.lossFn")[0]
self.accMetric = self.config.getStringConfig("valid.accuracy.metric")[0]
self.trackErr = self.config.getBooleanConfig("train.track.error")[0]
self.batchIntv = self.config.getIntConfig("train.batch.intv")[0]
self.restored = False
self.clabels = list(range(self.outputSize)) if self.outputSize > 1 else None
#build network
layers = list()
ninp = numinp
trData = self.config.getStringConfig("train.layer.data")[0].split(",")
for ld in trData:
lde = ld.split(":")
assert len(lde) == 5, "expecting 5 items for layer data"
#num of units, activation, whether batch normalize, whether batch normalize after activation, dropout fraction
nunit = int(lde[0])
actStr = lde[1]
act = FeedForwardNetwork.createActivation(actStr) if actStr != "none" else None
bnorm = lde[2] == "true"
afterAct = lde[3] == "true"
dpr = float(lde[4])
layers.append(torch.nn.Linear(ninp, nunit))
if bnorm:
#with batch norm
if afterAct:
safeAppend(layers, act)
layers.append(torch.nn.BatchNorm1d(nunit))
else:
layers.append(torch.nn.BatchNorm1d(nunit))
safeAppend(layers, act)
else:
#without batch norm
safeAppend(layers, act)
if dpr > 0:
layers.append(torch.nn.Dropout(dpr))
ninp = nunit
self.layers = torch.nn.Sequential(*layers)
self.device = FeedForwardNetwork.getDevice(self)
#training data
dataFile = self.config.getStringConfig("train.data.file")[0]
(featData, outData) = FeedForwardNetwork.prepData(self, dataFile)
self.featData = torch.from_numpy(featData)
self.outData = torch.from_numpy(outData)
#validation data
dataFile = self.config.getStringConfig("valid.data.file")[0]
(featDataV, outDataV) = FeedForwardNetwork.prepData(self, dataFile)
self.validFeatData = torch.from_numpy(featDataV)
self.validOutData = torch.from_numpy(outDataV)
# loss function and optimizer
self.lossFn = FeedForwardNetwork.createLossFunction(self, self.lossFnStr)
self.optimizer = FeedForwardNetwork.createOptimizer(self, optimizer)
self.yPred = None
self.restored = False
#mode to device
self.device = FeedForwardNetwork.getDevice(self)
self.featData = self.featData.to(self.device)
self.outData = self.outData.to(self.device)
self.validFeatData = self.validFeatData.to(self.device)
self.to(self.device)
@staticmethod
def getDevice(model):
"""
gets device
Parameters
model : torch model
"""
devType = model.config.getStringConfig("common.device")[0]
if devType == "cuda":
if torch.cuda.is_available():
device = torch.device("cuda")
else:
exitWithMsg("cuda not available")
else:
device = torch.device("cpu")
return device
def setValidationData(self, dataSource, prep=True):
"""
sets validation data
Parameters
dataSource : data source str if file path or 2D array
prep : if True load and prepare
"""
if prep:
(featDataV, outDataV) = FeedForwardNetwork.prepData(self, dataSource)
self.validFeatData = torch.from_numpy(featDataV)
self.validOutData = outDataV
else:
self.validFeatData = torch.from_numpy(dataSource[0])
self.validOutData = dataSource[1]
self.validFeatData = self.validFeatData.to(self.device)
@staticmethod
def createActivation(actName):
"""
create activation
Parameters
actName : activation name
"""
if actName is None:
activation = None
elif actName == "relu":
activation = torch.nn.ReLU()
elif actName == "tanh":
activation = torch.nn.Tanh()
elif actName == "sigmoid":
activation = torch.nn.Sigmoid()
elif actName == "softmax":
activation = torch.nn.Softmax(dim=1)
else:
exitWithMsg("invalid activation function name " + actName)
return activation
@staticmethod
def createLossFunction(model, lossFnName):
"""
create loss function
Parameters
lossFnName : loss function name
"""
config = model.config
lossRed = config.getStringConfig("train.loss.reduction")[0]
if lossFnName == "ltwo" or lossFnName == "mse":
lossFunc = torch.nn.MSELoss(reduction=lossRed)
elif lossFnName == "ce":
lossFunc = torch.nn.CrossEntropyLoss(reduction=lossRed)
elif lossFnName == "lone" or lossFnName == "mae":
lossFunc = torch.nn.L1Loss(reduction=lossRed)
elif lossFnName == "bce":
lossFunc = torch.nn.BCELoss(reduction=lossRed)
elif lossFnName == "bcel":
lossFunc = torch.nn.BCEWithLogitsLoss(reduction=lossRed)
elif lossFnName == "sm":
lossFunc = torch.nn.SoftMarginLoss(reduction=lossRed)
elif lossFnName == "mlsm":
lossFunc = torch.nn.MultiLabelSoftMarginLoss(reduction=lossRed)
else:
exitWithMsg("invalid loss function name " + lossFnName)
return lossFunc
@staticmethod
def createOptimizer(model, optName):
"""
create optimizer
Parameters
optName : optimizer name
"""
config = model.config
learnRate = config.getFloatConfig("train.opt.learning.rate")[0]
weightDecay = config.getFloatConfig("train.opt.weight.decay")[0]
momentum = config.getFloatConfig("train.opt.momentum")[0]
eps = config.getFloatConfig("train.opt.eps")[0]
if optName == "sgd":
dampening = config.getFloatConfig("train.opt.dampening")[0]
momentumNesterov = config.getBooleanConfig("train.opt.momentum.nesterov")[0]
optimizer = torch.optim.SGD(model.parameters(),lr=learnRate, momentum=momentum,
dampening=dampening, weight_decay=weightDecay, nesterov=momentumNesterov)
elif optName == "adam":
betas = config.getFloatListConfig("train.opt.betas")[0]
betas = (betas[0], betas[1])
optimizer = torch.optim.Adam(model.parameters(), lr=learnRate,betas=betas, eps = eps,
weight_decay=weightDecay)
elif optName == "rmsprop":
alpha = config.getFloatConfig("train.opt.alpha")[0]
optimizer = torch.optim.RMSprop(model.parameters(), lr=learnRate, alpha=alpha,
eps=eps, weight_decay=weightDecay, momentum=momentum)
else:
exitWithMsg("invalid optimizer name " + optName)
return optimizer
def forward(self, x):
"""
In the forward function we accept a Tensor of input data and we must return
a Tensor of output data. We can use Modules defined in the constructor as
well as arbitrary (differentiable) operations on Tensors.
Parameters
x : data batch
"""
y = self.layers(x)
return y
@staticmethod
def addForwardHook(model, l, cl = 0):
"""
register forward hooks
Parameters
l :
cl :
"""
for name, layer in model._modules.items():
#If it is a sequential, don't register a hook on it
# but recursively register hook on all it's module children
print(str(cl) + " : " + name)
if isinstance(layer, torch.nn.Sequential):
FeedForwardNetwork.addForwardHook(layer, l, cl)
else:
# it's a non sequential. Register a hook
if cl == l:
print("setting hook at layer " + str(l))
layer.register_forward_hook(hookFn)
cl += 1
@staticmethod
def prepData(model, dataSource, includeOutFld=True):
"""
loads and prepares data
Parameters
dataSource : data source str if file path or 2D array
includeOutFld : True if target freld to be included
"""
# parameters
fieldIndices = model.config.getIntListConfig("train.data.fields")[0]
featFieldIndices = model.config.getIntListConfig("train.data.feature.fields")[0]
#all data and feature data
isDataFile = isinstance(dataSource, str)
selFieldIndices = fieldIndices if includeOutFld else fieldIndices[:-1]
if isDataFile:
#source file path
(data, featData) = loadDataFile(dataSource, ",", selFieldIndices, featFieldIndices)
else:
# tabular data
data = tableSelFieldsFilter(dataSource, selFieldIndices)
featData = tableSelFieldsFilter(data, featFieldIndices)
#print(featData)
featData = np.array(featData)
if (model.config.getStringConfig("common.preprocessing")[0] == "scale"):
scalingMethod = model.config.getStringConfig("common.scaling.method")[0]
#scale only if there are enough rows
nrow = featData.shape[0]
minrows = model.config.getIntConfig("common.scaling.minrows")[0]
if nrow > minrows:
#in place scaling
featData = scaleData(featData, scalingMethod)
else:
#use pre computes scaling parameters
spFile = model.config.getStringConfig("common.scaling.param.file")[0]
if spFile is None:
exitWithMsg("for small data sets pre computed scaling parameters need to provided")
scParams = restoreObject(spFile)
featData = scaleDataWithParams(featData, scalingMethod, scParams)
featData = np.array(featData)
# target data
if includeOutFld:
outFieldIndices = model.config.getStringConfig("train.data.out.fields")[0]
outFieldIndices = strToIntArray(outFieldIndices, ",")
if isDataFile:
outData = data[:,outFieldIndices]
else:
outData = tableSelFieldsFilter(data, outFieldIndices)
outData = np.array(outData)
foData = (featData.astype(np.float32), outData.astype(np.float32))
else:
foData = featData.astype(np.float32)
return foData
@staticmethod
def saveCheckpt(model):
"""
checkpoints model
Parameters
model : torch model
"""
print("..saving model checkpoint")
modelDirectory = model.config.getStringConfig("common.model.directory")[0]
assert os.path.exists(modelDirectory), "model save directory does not exist"
modelFile = model.config.getStringConfig("common.model.file")[0]
filepath = os.path.join(modelDirectory, modelFile)
state = {"state_dict": model.state_dict(), "optim_dict": model.optimizer.state_dict()}
torch.save(state, filepath)
if model.verbose:
print("model saved")
@staticmethod
def restoreCheckpt(model, loadOpt=False):
"""
restored checkpointed model
Parameters
model : torch model
loadOpt : True if optimizer to be loaded
"""
if not model.restored:
print("..restoring model checkpoint")
modelDirectory = model.config.getStringConfig("common.model.directory")[0]
modelFile = model.config.getStringConfig("common.model.file")[0]
filepath = os.path.join(modelDirectory, modelFile)
assert os.path.exists(filepath), "model save file does not exist"
checkpoint = torch.load(filepath)
model.load_state_dict(checkpoint["state_dict"])
model.to(model.device)
if loadOpt:
model.optimizer.load_state_dict(checkpoint["optim_dict"])
model.restored = True
@staticmethod
def processClassifOutput(yPred, config):
"""
extracts probability label 1 or label with highest probability
Parameters
yPred : predicted output
config : config object
"""
outType = config.getStringConfig("predict.output")[0]
if outType == "prob":
outputSize = config.getIntConfig("train.output.size")[0]
if outputSize == 2:
#return prob of pos class for binary classifier
yPred = yPred[:, 1]
else:
#return class value and probability for multi classifier
yCl = np.argmax(yPred, axis=1)
yPred = list(map(lambda y : y[0][y[1]], zip(yPred, yCl)))
yPred = zip(yCl, yPred)
else:
yPred = np.argmax(yPred, axis=1)
return yPred
@staticmethod
def printPrediction(yPred, config, dataSource):
"""
prints input feature data and prediction
Parameters
yPred : predicted output
config : config object
dataSource : data source str if file path or 2D array
"""
#prDataFilePath = config.getStringConfig("predict.data.file")[0]
padWidth = config.getIntConfig("predict.feat.pad.size")[0]
i = 0
if type(dataSource) == str:
for rec in fileRecGen(dataSource, ","):
feat = (",".join(rec)).ljust(padWidth, " ")
rec = feat + "\t" + str(yPred[i])
print(rec)
i += 1
else:
for rec in dataSource:
srec = toStrList(rec, 6)
feat = (",".join(srec)).ljust(padWidth, " ")
srec = feat + "\t" + str(yPred[i])
print(srec)
i += 1
@staticmethod
def allTrain(model):
"""
train with all data
Parameters
model : torch model
"""
# train mode
model.train()
for t in range(model.numIter):
# Forward pass: Compute predicted y by passing x to the model
yPred = model(model.featData)
# Compute and print loss
loss = model.lossFn(yPred, model.outData)
if model.verbose and t % 50 == 0:
print("epoch {} loss {:.6f}".format(t, loss.item()))
# Zero gradients, perform a backward pass, and update the weights.
model.optimizer.zero_grad()
loss.backward()
model.optimizer.step()
#validate
model.eval()
yPred = model(model.validFeatData)
yPred = yPred.data.cpu().numpy()
yActual = model.validOutData
if model.verbose:
result = np.concatenate((yPred, yActual), axis = 1)
print("predicted actual")
print(result)
score = perfMetric(model.accMetric, yActual, yPred)
print(formatFloat(3, score, "perf score"))
return score
@staticmethod
def batchTrain(model):
"""
train with batch data
Parameters
model : torch model
"""
model.restored = False
trainData = TensorDataset(model.featData, model.outData)
trainDataLoader = DataLoader(dataset=trainData, batch_size=model.batchSize, shuffle=True)
epochIntv = model.config.getIntConfig("train.epoch.intv")[0]
# train mode
model.train()
if model.trackErr:
trErr = list()
vaErr = list()
#epoch
for t in range(model.numIter):
#batch
b = 0
epochLoss = 0.0
for xBatch, yBatch in trainDataLoader:
# Forward pass: Compute predicted y by passing x to the model
xBatch, yBatch = xBatch.to(model.device), yBatch.to(model.device)
yPred = model(xBatch)
# Compute and print loss
loss = model.lossFn(yPred, yBatch)
if model.verbose and t % epochIntv == 0 and b % model.batchIntv == 0:
print("epoch {} batch {} loss {:.6f}".format(t, b, loss.item()))
if model.trackErr and model.batchIntv == 0:
epochLoss += loss.item()
#error tracking at batch level
if model.trackErr and model.batchIntv > 0 and b % model.batchIntv == 0:
trErr.append(loss.item())
vloss = FeedForwardNetwork.evaluateModel(model)
vaErr.append(vloss)
# Zero gradients, perform a backward pass, and update the weights.
model.optimizer.zero_grad()
loss.backward()
model.optimizer.step()
b += 1
#error tracking at epoch level
if model.trackErr and model.batchIntv == 0:
epochLoss /= len(trainDataLoader)
trErr.append(epochLoss)
vloss = FeedForwardNetwork.evaluateModel(model)
vaErr.append(vloss)
#validate
model.eval()
yPred = model(model.validFeatData)
yPred = yPred.data.cpu().numpy()
yActual = model.validOutData
if model.verbose:
vsize = yPred.shape[0]
print("\npredicted \t\t actual")
for i in range(vsize):
print(str(yPred[i]) + "\t" + str(yActual[i]))
score = perfMetric(model.accMetric, yActual, yPred)
print(yActual)
print(yPred)
print(formatFloat(3, score, "perf score"))
#save
modelSave = model.config.getBooleanConfig("train.model.save")[0]
if modelSave:
FeedForwardNetwork.saveCheckpt(model)
if model.trackErr:
FeedForwardNetwork.errorPlot(model, trErr, vaErr)
if model.config.getBooleanConfig("train.print.weights")[0]:
print("model weights")
for param in model.parameters():
print(param.data)
return score
@staticmethod
def errorPlot(model, trErr, vaErr):
"""
plot errors
Parameters
trErr : training error list
vaErr : validation error list
"""
x = np.arange(len(trErr))
plt.plot(x,trErr,label = "training error")
plt.plot(x,vaErr,label = "validation error")
plt.xlabel("iteration")
plt.ylabel("error")
plt.legend(["training error", "validation error"], loc='upper left')
plt.show()
@staticmethod
def modelPredict(model, dataSource = None):
"""
predict
Parameters
model : torch model
dataSource : data source
"""
#train or restore model
useSavedModel = model.config.getBooleanConfig("predict.use.saved.model")[0]
if useSavedModel:
FeedForwardNetwork.restoreCheckpt(model)
else:
FeedForwardNetwork.batchTrain(model)
#predict
if dataSource is None:
dataSource = model.config.getStringConfig("predict.data.file")[0]
featData = FeedForwardNetwork.prepData(model, dataSource, False)
#print(featData)
featData = torch.from_numpy(featData)
featData = featData.to(model.device)
model.eval()
yPred = model(featData)
yPred = yPred.data.cpu().numpy()
#print(yPred)
if model.outputSize >= 2:
#classification
yPred = FeedForwardNetwork.processClassifOutput(yPred, model.config)
# print prediction
if model.config.getBooleanConfig("predict.print.output")[0]:
FeedForwardNetwork.printPrediction(yPred, model.config, dataSource)
return yPred
def predict(self, dataSource = None):
"""
predict
Parameters
dataSource : data source
"""
return FeedForwardNetwork.modelPredict(self, dataSource)
@staticmethod
def evaluateModel(model):
"""
evaluate model
Parameters
model : torch model
"""
model.eval()
with torch.no_grad():
yPred = model(model.validFeatData)
#yPred = yPred.data.cpu().numpy()
yActual = model.validOutData
score = model.lossFn(yPred, yActual).item()
model.train()
return score
@staticmethod
def prepValidate(model, dataSource=None):
"""
prepare for validation
Parameters
model : torch model
dataSource : data source
"""
#train or restore model
if not model.restored:
useSavedModel = model.config.getBooleanConfig("predict.use.saved.model")[0]
if useSavedModel:
FeedForwardNetwork.restoreCheckpt(model)
else:
FeedForwardNetwork.batchTrain(model)
model.restored = True
if dataSource is not None:
model.setValidationData(dataSource)
@staticmethod
def validateModel(model, retPred=False):
"""
pmodel validation
Parameters
model : torch model
retPred : if True return prediction
"""
model.eval()
yPred = model(model.validFeatData)
yPred = yPred.data.cpu().numpy()
model.yPred = yPred
yActual = model.validOutData
vsize = yPred.shape[0]
if model.verbose:
print("\npredicted \t actual")
for i in range(vsize):
print("{:.3f}\t\t{:.3f}".format(yPred[i][0], yActual[i][0]))
score = perfMetric(model.accMetric, yActual, yPred)
print(formatFloat(3, score, "perf score"))
if retPred:
y = list(map(lambda i : (yPred[i][0], yActual[i][0]), range(vsize)))
res = (y, score)
return res
else:
return score