Priyanka-Kumavat-At-TE's picture
Upload 19 files
2fc2c1f
raw history blame
No virus
15.1 kB
#!/usr/local/bin/python3
# avenir-python: Machine Learning
# Author: Pranab Ghosh
#
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# Package imports
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
import sklearn as sk
import matplotlib
import random
import jprops
from random import randint
sys.path.append(os.path.abspath("../lib"))
from util import *
from mlutil import *
from tnn import FeedForwardNetwork
"""
LSTM with one or more hidden layers with multi domensional data
"""
class LstmNetwork(nn.Module):
def __init__(self, configFile):
"""
In the constructor we instantiate two nn.Linear modules and assign them as
member variables.
Parameters
configFile : config file path
"""
defValues = dict()
defValues["common.mode"] = ("training", None)
defValues["common.model.directory"] = ("model", None)
defValues["common.model.file"] = (None, None)
defValues["common.preprocessing"] = (None, None)
defValues["common.scaling.method"] = ("zscale", None)
defValues["common.scaling.minrows"] = (50, None)
defValues["common.verbose"] = (False, None)
defValues["common.device"] = ("cpu", None)
defValues["train.data.file"] = (None, "missing training data file path")
defValues["train.data.type"] = ("numeric", None)
defValues["train.data.feat.cols"] = (None, "missing feature columns")
defValues["train.data.target.col"] = (None, "missing target column")
defValues["train.data.delim"] = (",", None)
defValues["train.input.size"] = (None, "missing input size")
defValues["train.hidden.size"] = (None, "missing hidden size")
defValues["train.output.size"] = (None, "missing output size")
defValues["train.num.layers"] = (1, None)
defValues["train.seq.len"] = (1, None)
defValues["train.batch.size"] = (32, None)
defValues["train.batch.first"] = (False, None)
defValues["train.drop.prob"] = (0, None)
defValues["train.optimizer"] = ("adam", None)
defValues["train.opt.learning.rate"] = (.0001, None)
defValues["train.opt.weight.decay"] = (0, None)
defValues["train.opt.momentum"] = (0, None)
defValues["train.opt.eps"] = (1e-08, None)
defValues["train.opt.dampening"] = (0, None)
defValues["train.opt.momentum.nesterov"] = (False, None)
defValues["train.opt.betas"] = ([0.9, 0.999], None)
defValues["train.opt.alpha"] = (0.99, None)
defValues["train.out.sequence"] = (True, None)
defValues["train.out.activation"] = ("sigmoid", None)
defValues["train.loss.fn"] = ("mse", None)
defValues["train.loss.reduction"] = ("mean", None)
defValues["train.grad.clip"] = (5, None)
defValues["train.num.iterations"] = (500, None)
defValues["train.save.model"] = (False, None)
defValues["valid.data.file"] = (None, "missing validation data file path")
defValues["valid.accuracy.metric"] = (None, None)
defValues["predict.data.file"] = (None, None)
defValues["predict.use.saved.model"] = (True, None)
defValues["predict.output"] = ("binary", None)
defValues["predict.feat.pad.size"] = (60, None)
self.config = Configuration(configFile, defValues)
super(LstmNetwork, self).__init__()
def getConfig(self):
return self.config
def buildModel(self):
"""
Loads configuration and builds the various piecess necessary for the model
"""
torch.manual_seed(9999)
self.verbose = self.config.getStringConfig("common.verbose")[0]
self.inputSize = self.config.getIntConfig("train.input.size")[0]
self.outputSize = self.config.getIntConfig("train.output.size")[0]
self.nLayers = self.config.getIntConfig("train.num.layers")[0]
self.hiddenSize = self.config.getIntConfig("train.hidden.size")[0]
self.seqLen = self.config.getIntConfig("train.seq.len")[0]
self.batchSize = self.config.getIntConfig("train.batch.size")[0]
self.batchFirst = self.config.getBooleanConfig("train.batch.first")[0]
dropProb = self.config.getFloatConfig("train.drop.prob")[0]
self.outSeq = self.config.getBooleanConfig("train.out.sequence")[0]
self.device = FeedForwardNetwork.getDevice(self)
#model
self.lstm = nn.LSTM(self.inputSize, self.hiddenSize, self.nLayers, dropout=dropProb, batch_first=self.batchFirst)
self.linear = nn.Linear(self.hiddenSize, self.outputSize)
outAct = self.config.getStringConfig("train.out.activation")[0]
self.outAct = FeedForwardNetwork.createActivation(outAct)
#load training data
dataFilePath = self.config.getStringConfig("train.data.file")[0]
self.fCols = self.config.getIntListConfig("train.data.feat.cols")[0]
assert len(self.fCols) == 2, "specify only start and end columns of features"
self.tCol = self.config.getIntConfig("train.data.target.col")[0]
self.delim = self.config.getStringConfig("train.data.delim")[0]
self.fData, self.tData = self.loadData(dataFilePath, self.delim, self.fCols[0],self.fCols[1], self.tCol)
self.fData = torch.from_numpy(self.fData)
self.fData = self.fData.to(self.device)
self.tData = torch.from_numpy(self.tData)
self.tData = self.tData.to(self.device)
#load validation data
vaDataFilePath = self.config.getStringConfig("valid.data.file")[0]
self.vfData, self.vtData = self.loadData(vaDataFilePath, self.delim, self.fCols[0], self.fCols[1], self.tCol)
self.vfData = torch.from_numpy(self.vfData)
self.vfData = self.vfData.to(self.device)
self.vtData = torch.from_numpy(self.vtData)
self.vtData = self.vtData.to(self.device)
self.batchSize = self.config.getIntConfig("train.batch.size")[0]
self.dataSize = self.fData.shape[0]
self.numBatch = int(self.dataSize / self.batchSize)
self.restored = False
self.to(self.device)
def loadData(self, filePath, delim, scolStart, scolEnd, targetCol):
"""
loads data for file with one sequence per line and data can be a vector
Parameters
filePath : file path
delim : field delemeter
scolStart : seq column start index
scolEnd : seq column end index
targetCol : target field col index
"""
if targetCol >= 0:
#include target column
cols = list(range(scolStart, scolEnd + 1, 1))
cols.append(targetCol)
data = np.loadtxt(filePath, delimiter=delim, usecols=cols)
#one output for whole sequence
sData = data[:, :-1]
if (self.config.getStringConfig("common.preprocessing")[0] == "scale"):
sData = self.scaleSeqData(sData)
tData = data[:, -1]
#target int (index into class labels) for classification
sData = sData.astype(np.float32)
tData = tData.astype(np.float32) if self.outputSize == 1 else tData.astype(np.long)
exData = (sData, tData)
else:
#exclude target column
cols = list(range(scolStart, scolEnd + 1, 1))
data = np.loadtxt(filePath, delimiter=delim, usecols=cols)
#one output for whole sequence
sData = data
if (self.config.getStringConfig("common.preprocessing")[0] == "scale"):
sData = self.scaleSeqData(sData)
#target int (index into class labels) for classification
sData = sData.astype(np.float32)
exData = sData
return exData
def scaleSeqData(self, sData):
"""
scales data transforming non squence format
Parameters
sData : sequence data
"""
scalingMethod = self.config.getStringConfig("common.scaling.method")[0]
sData = fromMultDimSeqToTabular(sData, self.inputSize, self.seqLen)
sData = scaleData(sData, scalingMethod)
sData = fromTabularToMultDimSeq(sData, self.inputSize, self.seqLen)
return sData
def formattedBatchGenarator(self):
"""
transforms traing data from (dataSize, seqLength x inputSize) to (batch, seqLength, inputSize) tensor
or (seqLength, batch, inputSize) tensor
"""
for _ in range(self.numBatch):
bfData = torch.zeros([self.batchSize, self.seqLen, self.inputSize], dtype=torch.float32) if self.batchFirst\
else torch.zeros([self.seqLen, self.batchSize, self.inputSize], dtype=torch.float32)
tdType = torch.float32 if self.outputSize == 1 else torch.long
btData = torch.zeros([self.batchSize], dtype=tdType)
i = 0
for bdi in range(self.batchSize):
di = sampleUniform(0, self.dataSize-1)
row = self.fData[di]
for ci, cv in enumerate(row):
si = int(ci / self.inputSize)
ii = ci % self.inputSize
if self.batchFirst:
bfData[bdi][si][ii] = cv
else:
#print(si, bdi, ii)
bfData[si][bdi][ii] = cv
btData[i] = self.tData[di]
i += 1
#for seq output correct first 2 dimensions
if self.outSeq and not self.batchFirst:
btData = torch.transpose(btData,0,1)
yield (bfData, btData)
def formatData(self, fData, tData=None):
"""
transforms validation or prediction data data from (dataSize, seqLength x inputSize) to
(batch, seqLength, inputSize) tensor or (seqLength, batch, inputSize) tensor
Parameters
fData : feature data
tData : target data
"""
dSize = fData.shape[0]
bfData = torch.zeros([dSize, self.seqLen, self.inputSize], dtype=torch.float32) if self.batchFirst\
else torch.zeros([self.seqLen, dSize, self.inputSize], dtype=torch.float32)
for ri in range(dSize):
row = fData[ri]
for ci, cv in enumerate(row):
si = int(ci / self.inputSize)
ii = ci % self.inputSize
if self.batchFirst:
bfData[ri][si][ii] = cv
else:
bfData[si][ri][ii] = cv
if tData is not None:
btData = torch.transpose(tData,0,1) if self.outSeq and not self.batchFirst else tData
formData = (bfData, btData)
else:
formData = bfData
return formData
def forward(self, x, h):
"""
Forward pass
Parameters
x : input data
h : targhiddenet state
"""
out, hout = self.lstm(x,h)
if self.outSeq:
# seq to seq prediction
out = out.view(-1, self.hiddenSize)
out = self.linear(out)
if self.outAct is not None:
out = self.outAct(out)
out = out.view(self.batchSize * self.seqLen, -1)
else:
#seq to one prediction
out = out[self.seqLen - 1].view(-1, self.hiddenSize)
out = self.linear(out)
if self.outAct is not None:
out = self.outAct(out)
#out = out.view(self.batchSize, -1)
return out, hout
def initHidden(self, batch):
"""
Initialize hidden weights
Parameters
batch : batch size
"""
hidden = (torch.zeros(self.nLayers,batch,self.hiddenSize),
torch.zeros(self.nLayers,batch,self.hiddenSize))
return hidden
def trainLstm(self):
"""
train lstm
"""
print("..starting training")
self.train()
#device = self.config.getStringConfig("common.device")[0]
#self.to(device)
optimizerName = self.config.getStringConfig("train.optimizer")[0]
self.optimizer = FeedForwardNetwork.createOptimizer(self, optimizerName)
lossFn = self.config.getStringConfig("train.loss.fn")[0]
criterion = FeedForwardNetwork.createLossFunction(self, lossFn)
clip = self.config.getFloatConfig("train.grad.clip")[0]
numIter = self.config.getIntConfig("train.num.iterations")[0]
accMetric = self.config.getStringConfig("valid.accuracy.metric")[0]
for it in range(numIter):
b = 0
for inputs, labels in self.formattedBatchGenarator():
#forward pass
hid = self.initHidden(self.batchSize)
hid = (hid[0].to(self.device), hid[1].to(self.device))
inputs, labels = inputs.to(self.device), labels.to(self.device)
output, hid = self(inputs, hid)
#loss
if self.outSeq:
labels = labels.view(self.batchSize * self.seqLen, -1)
loss = criterion(output, labels)
if self.verbose and it % 50 == 0 and b % 10 == 0:
print("epoch {} batch {} loss {:.6f}".format(it, b, loss.item()))
# zero gradients, perform a backward pass, and update the weights.
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.parameters(), clip)
self.optimizer.step()
b += 1
#validate
print("..validating model")
self.eval()
with torch.no_grad():
fData, tData = self.formatData(self.vfData, self.vtData)
fData = fData.to(self.device)
vsize = tData.shape[0]
hid = self.initHidden(vsize)
hid = (hid[0].to(self.device), hid[1].to(self.device))
yPred, _ = self(fData, hid)
yPred = yPred.data.cpu().numpy()
yActual = tData.data.cpu().numpy()
if self.verbose:
print("\npredicted \t\t actual")
for i in range(vsize):
print(str(yPred[i]) + "\t" + str(yActual[i]))
score = perfMetric(accMetric, yActual, yPred)
print(formatFloat(3, score, "perf score"))
#save
modelSave = self.config.getBooleanConfig("train.model.save")[0]
if modelSave:
FeedForwardNetwork.saveCheckpt(self)
def predictLstm(self):
"""
predict
"""
print("..predicting using model")
useSavedModel = self.config.getBooleanConfig("predict.use.saved.model")[0]
if useSavedModel:
FeedForwardNetwork.restoreCheckpt(self)
else:
self.trainLstm()
prDataFilePath = self.config.getStringConfig("predict.data.file")[0]
pfData = self.loadData(prDataFilePath, self.delim, self.fCols[0], self.fCols[1], -1)
pfData = torch.from_numpy(pfData)
dsize = pfData.shape[0]
#predict
#device = self.config.getStringConfig("common.device")[0]
self.eval()
with torch.no_grad():
fData = self.formatData(pfData)
fData = fData.to(self.device)
hid = self.initHidden(dsize)
hid = (hid[0].to(self.device), hid[1].to(self.device))
yPred, _ = self(fData, hid)
yPred = yPred.data.cpu().numpy()
if self.outputSize == 2:
#classification
yPred = FeedForwardNetwork.processClassifOutput(yPred, self.config)
# print prediction
FeedForwardNetwork.printPrediction(yPred, self.config, prDataFilePath)