Spaces:
Build error
Build error
Upload 10 files
Browse files- data/.DS_Store +0 -0
- data/10106922982.jpeg +0 -0
- data/10111325994.jpeg +0 -0
- data/10113394119.jpeg +0 -0
- data/10119695953.jpeg +0 -0
- data/thuya.jpeg +0 -0
- notebooks/.DS_Store +0 -0
- notebooks/CLIP (3).ipynb +836 -0
- notebooks/LLaVa (1).ipynb +0 -0
- notebooks/SAM (1).ipynb +0 -0
data/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
data/10106922982.jpeg
ADDED
![]() |
data/10111325994.jpeg
ADDED
![]() |
data/10113394119.jpeg
ADDED
![]() |
data/10119695953.jpeg
ADDED
![]() |
data/thuya.jpeg
ADDED
![]() |
notebooks/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
notebooks/CLIP (3).ipynb
ADDED
@@ -0,0 +1,836 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"id": "sYaX1Rf8pCWN",
|
11 |
+
"outputId": "f52aaf57-323d-46ff-908f-f188525b830a",
|
12 |
+
"tags": []
|
13 |
+
},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"Collecting ftfy\n",
|
20 |
+
" Downloading ftfy-6.2.0-py3-none-any.whl (54 kB)\n",
|
21 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 54 kB 3.5 MB/s eta 0:00:011\n",
|
22 |
+
"\u001b[?25hCollecting regex\n",
|
23 |
+
" Downloading regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (774 kB)\n",
|
24 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 774 kB 4.9 MB/s eta 0:00:01\n",
|
25 |
+
"\u001b[?25hRequirement already satisfied: tqdm in /home/user/miniconda/lib/python3.9/site-packages (4.61.2)\n",
|
26 |
+
"Requirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /home/user/miniconda/lib/python3.9/site-packages (from ftfy) (0.2.13)\n",
|
27 |
+
"Installing collected packages: regex, ftfy\n",
|
28 |
+
"Successfully installed ftfy-6.2.0 regex-2024.5.15\n",
|
29 |
+
"Collecting git+https://github.com/openai/CLIP.git\n",
|
30 |
+
" Cloning https://github.com/openai/CLIP.git to /tmp/pip-req-build-7h9f8ksf\n",
|
31 |
+
" Running command git clone -q https://github.com/openai/CLIP.git /tmp/pip-req-build-7h9f8ksf\n",
|
32 |
+
"Requirement already satisfied: ftfy in /home/user/miniconda/lib/python3.9/site-packages (from clip==1.0) (6.2.0)\n",
|
33 |
+
"Requirement already satisfied: regex in /home/user/miniconda/lib/python3.9/site-packages (from clip==1.0) (2024.5.15)\n",
|
34 |
+
"Requirement already satisfied: tqdm in /home/user/miniconda/lib/python3.9/site-packages (from clip==1.0) (4.61.2)\n",
|
35 |
+
"Collecting torch\n",
|
36 |
+
" Downloading torch-2.3.0-cp39-cp39-manylinux1_x86_64.whl (779.1 MB)\n",
|
37 |
+
"\u001b[K |ββββββββββββββ | 322.4 MB 155.1 MB/s eta 0:00:03"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"name": "stderr",
|
42 |
+
"output_type": "stream",
|
43 |
+
"text": [
|
44 |
+
"IOPub data rate exceeded.\n",
|
45 |
+
"The Jupyter server will temporarily stop sending output\n",
|
46 |
+
"to the client in order to avoid crashing it.\n",
|
47 |
+
"To change this limit, set the config variable\n",
|
48 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
49 |
+
"\n",
|
50 |
+
"Current values:\n",
|
51 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
52 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
53 |
+
"\n"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"name": "stdout",
|
58 |
+
"output_type": "stream",
|
59 |
+
"text": [
|
60 |
+
"\u001b[K |ββββββββββββββββββββββββββββββ | 726.2 MB 140.6 MB/s eta 0:00:01"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"name": "stderr",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
"IOPub data rate exceeded.\n",
|
68 |
+
"The Jupyter server will temporarily stop sending output\n",
|
69 |
+
"to the client in order to avoid crashing it.\n",
|
70 |
+
"To change this limit, set the config variable\n",
|
71 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
72 |
+
"\n",
|
73 |
+
"Current values:\n",
|
74 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
75 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
76 |
+
"\n"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"name": "stdout",
|
81 |
+
"output_type": "stream",
|
82 |
+
"text": [
|
83 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 779.1 MB 39 kB/s \n",
|
84 |
+
"\u001b[?25hCollecting torchvision\n",
|
85 |
+
" Downloading torchvision-0.18.0-cp39-cp39-manylinux1_x86_64.whl (7.0 MB)\n",
|
86 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 7.0 MB 117.1 MB/s eta 0:00:01\n",
|
87 |
+
"\u001b[?25hRequirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /home/user/miniconda/lib/python3.9/site-packages (from ftfy->clip==1.0) (0.2.13)\n",
|
88 |
+
"Collecting filelock\n",
|
89 |
+
" Downloading filelock-3.14.0-py3-none-any.whl (12 kB)\n",
|
90 |
+
"Requirement already satisfied: jinja2 in /home/user/miniconda/lib/python3.9/site-packages (from torch->clip==1.0) (3.1.4)\n",
|
91 |
+
"Collecting nvidia-cuda-nvrtc-cu12==12.1.105\n",
|
92 |
+
" Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
|
93 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 23.7 MB 111.3 MB/s eta 0:00:01\n",
|
94 |
+
"\u001b[?25hCollecting nvidia-cudnn-cu12==8.9.2.26\n",
|
95 |
+
" Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
|
96 |
+
"\u001b[K |βββββββββββββ | 281.1 MB 157.5 MB/s eta 0:00:03"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"name": "stderr",
|
101 |
+
"output_type": "stream",
|
102 |
+
"text": [
|
103 |
+
"IOPub data rate exceeded.\n",
|
104 |
+
"The Jupyter server will temporarily stop sending output\n",
|
105 |
+
"to the client in order to avoid crashing it.\n",
|
106 |
+
"To change this limit, set the config variable\n",
|
107 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
108 |
+
"\n",
|
109 |
+
"Current values:\n",
|
110 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
111 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
112 |
+
"\n"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"name": "stdout",
|
117 |
+
"output_type": "stream",
|
118 |
+
"text": [
|
119 |
+
"\u001b[K |ββββββββββββββββββββββββββββββ | 687.7 MB 121.2 MB/s eta 0:00:01"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"name": "stderr",
|
124 |
+
"output_type": "stream",
|
125 |
+
"text": [
|
126 |
+
"IOPub data rate exceeded.\n",
|
127 |
+
"The Jupyter server will temporarily stop sending output\n",
|
128 |
+
"to the client in order to avoid crashing it.\n",
|
129 |
+
"To change this limit, set the config variable\n",
|
130 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
131 |
+
"\n",
|
132 |
+
"Current values:\n",
|
133 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
134 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
135 |
+
"\n"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"name": "stdout",
|
140 |
+
"output_type": "stream",
|
141 |
+
"text": [
|
142 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 731.7 MB 27 kB/s \n",
|
143 |
+
"\u001b[?25hCollecting triton==2.3.0\n",
|
144 |
+
" Downloading triton-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (168.1 MB)\n",
|
145 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 168.1 MB 163.1 MB/s eta 0:00:01\n",
|
146 |
+
"\u001b[?25hCollecting nvidia-nccl-cu12==2.20.5\n",
|
147 |
+
" Downloading nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n",
|
148 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 176.2 MB 157 kB/s s eta 0:00:01\n",
|
149 |
+
"\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1\n",
|
150 |
+
" Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
|
151 |
+
"\u001b[K |βββββββββββββββββββββββ | 291.1 MB 155.6 MB/s eta 0:00:01"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"name": "stderr",
|
156 |
+
"output_type": "stream",
|
157 |
+
"text": [
|
158 |
+
"IOPub data rate exceeded.\n",
|
159 |
+
"The Jupyter server will temporarily stop sending output\n",
|
160 |
+
"to the client in order to avoid crashing it.\n",
|
161 |
+
"To change this limit, set the config variable\n",
|
162 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
163 |
+
"\n",
|
164 |
+
"Current values:\n",
|
165 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
166 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
167 |
+
"\n"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"name": "stdout",
|
172 |
+
"output_type": "stream",
|
173 |
+
"text": [
|
174 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 410.6 MB 11 kB/s /s eta 0:00:01\n",
|
175 |
+
"\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106\n",
|
176 |
+
" Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
|
177 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 56.5 MB 125.6 MB/s eta 0:00:01ββββββββββββββββββββ | 35.0 MB 125.6 MB/s eta 0:00:01\n",
|
178 |
+
"\u001b[?25hRequirement already satisfied: typing-extensions>=4.8.0 in /home/user/miniconda/lib/python3.9/site-packages (from torch->clip==1.0) (4.11.0)\n",
|
179 |
+
"Collecting nvidia-cusolver-cu12==11.4.5.107\n",
|
180 |
+
" Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
|
181 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 124.2 MB 144.5 MB/s eta 0:00:01\n",
|
182 |
+
"\u001b[?25hCollecting sympy\n",
|
183 |
+
" Downloading sympy-1.12-py3-none-any.whl (5.7 MB)\n",
|
184 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 5.7 MB 109.2 MB/s eta 0:00:01\n",
|
185 |
+
"\u001b[?25hCollecting fsspec\n",
|
186 |
+
" Downloading fsspec-2024.5.0-py3-none-any.whl (316 kB)\n",
|
187 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 316 kB 119.1 MB/s eta 0:00:01\n",
|
188 |
+
"\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105\n",
|
189 |
+
" Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
|
190 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 823 kB 119.5 MB/s eta 0:00:01\n",
|
191 |
+
"\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105\n",
|
192 |
+
" Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
|
193 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 14.1 MB 126.1 MB/s eta 0:00:01\n",
|
194 |
+
"\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54\n",
|
195 |
+
" Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
|
196 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 121.6 MB 4.8 MB/s eta 0:00:011\n",
|
197 |
+
"\u001b[?25hCollecting networkx\n",
|
198 |
+
" Downloading networkx-3.2.1-py3-none-any.whl (1.6 MB)\n",
|
199 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 1.6 MB 112.8 MB/s eta 0:00:01\n",
|
200 |
+
"\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106\n",
|
201 |
+
" Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
|
202 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 196.0 MB 154.4 MB/s eta 0:00:01\n",
|
203 |
+
"\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105\n",
|
204 |
+
" Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
|
205 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 99 kB 39.0 MB/s eta 0:00:01\n",
|
206 |
+
"\u001b[?25hCollecting nvidia-nvjitlink-cu12\n",
|
207 |
+
" Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
|
208 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 21.1 MB 123.7 MB/s eta 0:00:01\n",
|
209 |
+
"\u001b[?25hRequirement already satisfied: MarkupSafe>=2.0 in /home/user/miniconda/lib/python3.9/site-packages (from jinja2->torch->clip==1.0) (2.1.5)\n",
|
210 |
+
"Collecting mpmath>=0.19\n",
|
211 |
+
" Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n",
|
212 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 536 kB 125.5 MB/s eta 0:00:01\n",
|
213 |
+
"\u001b[?25hCollecting pillow!=8.3.*,>=5.3.0\n",
|
214 |
+
" Downloading pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (4.5 MB)\n",
|
215 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 4.5 MB 123.5 MB/s eta 0:00:01\n",
|
216 |
+
"\u001b[?25hCollecting numpy\n",
|
217 |
+
" Downloading numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n",
|
218 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 18.2 MB 113.2 MB/s eta 0:00:01 | 1.1 MB 113.2 MB/s eta 0:00:01\n",
|
219 |
+
"\u001b[?25hBuilding wheels for collected packages: clip\n",
|
220 |
+
" Building wheel for clip (setup.py) ... \u001b[?25ldone\n",
|
221 |
+
"\u001b[?25h Created wheel for clip: filename=clip-1.0-py3-none-any.whl size=1369525 sha256=2d16eeced15e3729c52334f9be57fd2ddca900110e745c1af86ab5aade88cd62\n",
|
222 |
+
" Stored in directory: /tmp/pip-ephem-wheel-cache-8vr04co8/wheels/c8/e4/e1/11374c111387672fc2068dfbe0d4b424cb9cdd1b2e184a71b5\n",
|
223 |
+
"Successfully built clip\n",
|
224 |
+
"Installing collected packages: nvidia-nvjitlink-cu12, nvidia-cusparse-cu12, nvidia-cublas-cu12, mpmath, filelock, triton, sympy, nvidia-nvtx-cu12, nvidia-nccl-cu12, nvidia-cusolver-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cudnn-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, networkx, fsspec, torch, pillow, numpy, torchvision, clip\n",
|
225 |
+
"Successfully installed clip-1.0 filelock-3.14.0 fsspec-2024.5.0 mpmath-1.3.0 networkx-3.2.1 numpy-1.26.4 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.4.127 nvidia-nvtx-cu12-12.1.105 pillow-10.3.0 sympy-1.12 torch-2.3.0 torchvision-0.18.0 triton-2.3.0\n",
|
226 |
+
"\u001b[33mWARNING: Requirement 'sentencepiece-0.1.98-cp311-cp311-win_amd64.whl' looks like a filename, but the file does not exist\u001b[0m\n",
|
227 |
+
"\u001b[31mERROR: sentencepiece-0.1.98-cp311-cp311-win_amd64.whl is not a supported wheel on this platform.\u001b[0m\n"
|
228 |
+
]
|
229 |
+
}
|
230 |
+
],
|
231 |
+
"source": [
|
232 |
+
"!pip install ftfy regex tqdm\n",
|
233 |
+
"!pip install git+https://github.com/openai/CLIP.git\n",
|
234 |
+
"!pip install sentencepiece-0.1.98-cp311-cp311-win_amd64.whl\n",
|
235 |
+
"\n"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 5,
|
241 |
+
"metadata": {
|
242 |
+
"colab": {
|
243 |
+
"base_uri": "https://localhost:8080/"
|
244 |
+
},
|
245 |
+
"id": "Zuat0Supqs7r",
|
246 |
+
"outputId": "f3ec0a32-0d58-4241-d3f2-621828297c43",
|
247 |
+
"tags": []
|
248 |
+
},
|
249 |
+
"outputs": [
|
250 |
+
{
|
251 |
+
"name": "stdout",
|
252 |
+
"output_type": "stream",
|
253 |
+
"text": [
|
254 |
+
"Collecting transformers\n",
|
255 |
+
" Downloading transformers-4.41.0-py3-none-any.whl (9.1 MB)\n",
|
256 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 9.1 MB 4.3 MB/s eta 0:00:01\n",
|
257 |
+
"\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (4.61.2)\n",
|
258 |
+
"Collecting tokenizers<0.20,>=0.19\n",
|
259 |
+
" Downloading tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n",
|
260 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 3.6 MB 104.9 MB/s eta 0:00:01\n",
|
261 |
+
"\u001b[?25hRequirement already satisfied: pyyaml>=5.1 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (6.0.1)\n",
|
262 |
+
"Requirement already satisfied: filelock in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (3.14.0)\n",
|
263 |
+
"Requirement already satisfied: numpy>=1.17 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (1.26.4)\n",
|
264 |
+
"Collecting huggingface-hub<1.0,>=0.23.0\n",
|
265 |
+
" Downloading huggingface_hub-0.23.0-py3-none-any.whl (401 kB)\n",
|
266 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 401 kB 120.0 MB/s eta 0:00:01\n",
|
267 |
+
"\u001b[?25hRequirement already satisfied: packaging>=20.0 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (24.0)\n",
|
268 |
+
"Requirement already satisfied: regex!=2019.12.17 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (2024.5.15)\n",
|
269 |
+
"Requirement already satisfied: requests in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (2.31.0)\n",
|
270 |
+
"Collecting safetensors>=0.4.1\n",
|
271 |
+
" Downloading safetensors-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n",
|
272 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 1.2 MB 95.0 MB/s eta 0:00:01\n",
|
273 |
+
"\u001b[?25hRequirement already satisfied: typing-extensions>=3.7.4.3 in /home/user/miniconda/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.23.0->transformers) (4.11.0)\n",
|
274 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /home/user/miniconda/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.23.0->transformers) (2024.5.0)\n",
|
275 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (2021.5.30)\n",
|
276 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (3.3.2)\n",
|
277 |
+
"Requirement already satisfied: idna<4,>=2.5 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (2.10)\n",
|
278 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (1.26.6)\n",
|
279 |
+
"Installing collected packages: huggingface-hub, tokenizers, safetensors, transformers\n",
|
280 |
+
"Successfully installed huggingface-hub-0.23.0 safetensors-0.4.3 tokenizers-0.19.1 transformers-4.41.0\n"
|
281 |
+
]
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"source": [
|
285 |
+
"# prompt: install transformers\n",
|
286 |
+
"\n",
|
287 |
+
"!pip install transformers\n"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": 6,
|
293 |
+
"metadata": {
|
294 |
+
"id": "8xOP6veIq5LM",
|
295 |
+
"tags": []
|
296 |
+
},
|
297 |
+
"outputs": [
|
298 |
+
{
|
299 |
+
"data": {
|
300 |
+
"application/json": {
|
301 |
+
"ascii": false,
|
302 |
+
"bar_format": null,
|
303 |
+
"colour": null,
|
304 |
+
"elapsed": 0.0066907405853271484,
|
305 |
+
"initial": 0,
|
306 |
+
"n": 0,
|
307 |
+
"ncols": null,
|
308 |
+
"nrows": null,
|
309 |
+
"postfix": null,
|
310 |
+
"prefix": "preprocessor_config.json",
|
311 |
+
"rate": null,
|
312 |
+
"total": 228,
|
313 |
+
"unit": "B",
|
314 |
+
"unit_divisor": 1000,
|
315 |
+
"unit_scale": true
|
316 |
+
},
|
317 |
+
"application/vnd.jupyter.widget-view+json": {
|
318 |
+
"model_id": "d43500a3f8b1440baaaf1337fd547030",
|
319 |
+
"version_major": 2,
|
320 |
+
"version_minor": 0
|
321 |
+
},
|
322 |
+
"text/plain": [
|
323 |
+
"preprocessor_config.json: 0%| | 0.00/228 [00:00<?, ?B/s]"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
"metadata": {},
|
327 |
+
"output_type": "display_data"
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"name": "stderr",
|
331 |
+
"output_type": "stream",
|
332 |
+
"text": [
|
333 |
+
"/home/user/miniconda/lib/python3.9/site-packages/transformers/models/vit/feature_extraction_vit.py:28: FutureWarning: The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use ViTImageProcessor instead.\n",
|
334 |
+
" warnings.warn(\n"
|
335 |
+
]
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"data": {
|
339 |
+
"application/json": {
|
340 |
+
"ascii": false,
|
341 |
+
"bar_format": null,
|
342 |
+
"colour": null,
|
343 |
+
"elapsed": 0.004696846008300781,
|
344 |
+
"initial": 0,
|
345 |
+
"n": 0,
|
346 |
+
"ncols": null,
|
347 |
+
"nrows": null,
|
348 |
+
"postfix": null,
|
349 |
+
"prefix": "tokenizer_config.json",
|
350 |
+
"rate": null,
|
351 |
+
"total": 241,
|
352 |
+
"unit": "B",
|
353 |
+
"unit_divisor": 1000,
|
354 |
+
"unit_scale": true
|
355 |
+
},
|
356 |
+
"application/vnd.jupyter.widget-view+json": {
|
357 |
+
"model_id": "bf4f06b628644ec8a638e5f32bd00324",
|
358 |
+
"version_major": 2,
|
359 |
+
"version_minor": 0
|
360 |
+
},
|
361 |
+
"text/plain": [
|
362 |
+
"tokenizer_config.json: 0%| | 0.00/241 [00:00<?, ?B/s]"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
"metadata": {},
|
366 |
+
"output_type": "display_data"
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"data": {
|
370 |
+
"application/json": {
|
371 |
+
"ascii": false,
|
372 |
+
"bar_format": null,
|
373 |
+
"colour": null,
|
374 |
+
"elapsed": 0.004175662994384766,
|
375 |
+
"initial": 0,
|
376 |
+
"n": 0,
|
377 |
+
"ncols": null,
|
378 |
+
"nrows": null,
|
379 |
+
"postfix": null,
|
380 |
+
"prefix": "vocab.json",
|
381 |
+
"rate": null,
|
382 |
+
"total": 798156,
|
383 |
+
"unit": "B",
|
384 |
+
"unit_divisor": 1000,
|
385 |
+
"unit_scale": true
|
386 |
+
},
|
387 |
+
"application/vnd.jupyter.widget-view+json": {
|
388 |
+
"model_id": "ffc926da2aa540f2a1760c3bb4fb4909",
|
389 |
+
"version_major": 2,
|
390 |
+
"version_minor": 0
|
391 |
+
},
|
392 |
+
"text/plain": [
|
393 |
+
"vocab.json: 0%| | 0.00/798k [00:00<?, ?B/s]"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
"metadata": {},
|
397 |
+
"output_type": "display_data"
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"data": {
|
401 |
+
"application/json": {
|
402 |
+
"ascii": false,
|
403 |
+
"bar_format": null,
|
404 |
+
"colour": null,
|
405 |
+
"elapsed": 0.004157304763793945,
|
406 |
+
"initial": 0,
|
407 |
+
"n": 0,
|
408 |
+
"ncols": null,
|
409 |
+
"nrows": null,
|
410 |
+
"postfix": null,
|
411 |
+
"prefix": "merges.txt",
|
412 |
+
"rate": null,
|
413 |
+
"total": 456356,
|
414 |
+
"unit": "B",
|
415 |
+
"unit_divisor": 1000,
|
416 |
+
"unit_scale": true
|
417 |
+
},
|
418 |
+
"application/vnd.jupyter.widget-view+json": {
|
419 |
+
"model_id": "302ae34c419d484a9b16e025d6d2690b",
|
420 |
+
"version_major": 2,
|
421 |
+
"version_minor": 0
|
422 |
+
},
|
423 |
+
"text/plain": [
|
424 |
+
"merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
425 |
+
]
|
426 |
+
},
|
427 |
+
"metadata": {},
|
428 |
+
"output_type": "display_data"
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"data": {
|
432 |
+
"application/json": {
|
433 |
+
"ascii": false,
|
434 |
+
"bar_format": null,
|
435 |
+
"colour": null,
|
436 |
+
"elapsed": 0.004187107086181641,
|
437 |
+
"initial": 0,
|
438 |
+
"n": 0,
|
439 |
+
"ncols": null,
|
440 |
+
"nrows": null,
|
441 |
+
"postfix": null,
|
442 |
+
"prefix": "tokenizer.json",
|
443 |
+
"rate": null,
|
444 |
+
"total": 1355446,
|
445 |
+
"unit": "B",
|
446 |
+
"unit_divisor": 1000,
|
447 |
+
"unit_scale": true
|
448 |
+
},
|
449 |
+
"application/vnd.jupyter.widget-view+json": {
|
450 |
+
"model_id": "de2f6cacd09a43c98c06cf4e4243c7c7",
|
451 |
+
"version_major": 2,
|
452 |
+
"version_minor": 0
|
453 |
+
},
|
454 |
+
"text/plain": [
|
455 |
+
"tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
"metadata": {},
|
459 |
+
"output_type": "display_data"
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"data": {
|
463 |
+
"application/json": {
|
464 |
+
"ascii": false,
|
465 |
+
"bar_format": null,
|
466 |
+
"colour": null,
|
467 |
+
"elapsed": 0.004050254821777344,
|
468 |
+
"initial": 0,
|
469 |
+
"n": 0,
|
470 |
+
"ncols": null,
|
471 |
+
"nrows": null,
|
472 |
+
"postfix": null,
|
473 |
+
"prefix": "special_tokens_map.json",
|
474 |
+
"rate": null,
|
475 |
+
"total": 120,
|
476 |
+
"unit": "B",
|
477 |
+
"unit_divisor": 1000,
|
478 |
+
"unit_scale": true
|
479 |
+
},
|
480 |
+
"application/vnd.jupyter.widget-view+json": {
|
481 |
+
"model_id": "c4921bf4d08d4156a1904fabe261235c",
|
482 |
+
"version_major": 2,
|
483 |
+
"version_minor": 0
|
484 |
+
},
|
485 |
+
"text/plain": [
|
486 |
+
"special_tokens_map.json: 0%| | 0.00/120 [00:00<?, ?B/s]"
|
487 |
+
]
|
488 |
+
},
|
489 |
+
"metadata": {},
|
490 |
+
"output_type": "display_data"
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"data": {
|
494 |
+
"application/json": {
|
495 |
+
"ascii": false,
|
496 |
+
"bar_format": null,
|
497 |
+
"colour": null,
|
498 |
+
"elapsed": 0.004579067230224609,
|
499 |
+
"initial": 0,
|
500 |
+
"n": 0,
|
501 |
+
"ncols": null,
|
502 |
+
"nrows": null,
|
503 |
+
"postfix": null,
|
504 |
+
"prefix": "config.json",
|
505 |
+
"rate": null,
|
506 |
+
"total": 4609,
|
507 |
+
"unit": "B",
|
508 |
+
"unit_divisor": 1000,
|
509 |
+
"unit_scale": true
|
510 |
+
},
|
511 |
+
"application/vnd.jupyter.widget-view+json": {
|
512 |
+
"model_id": "2c6081497e1542ab9f86e1f763a46101",
|
513 |
+
"version_major": 2,
|
514 |
+
"version_minor": 0
|
515 |
+
},
|
516 |
+
"text/plain": [
|
517 |
+
"config.json: 0%| | 0.00/4.61k [00:00<?, ?B/s]"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
"metadata": {},
|
521 |
+
"output_type": "display_data"
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"data": {
|
525 |
+
"application/json": {
|
526 |
+
"ascii": false,
|
527 |
+
"bar_format": null,
|
528 |
+
"colour": null,
|
529 |
+
"elapsed": 0.0045909881591796875,
|
530 |
+
"initial": 0,
|
531 |
+
"n": 0,
|
532 |
+
"ncols": null,
|
533 |
+
"nrows": null,
|
534 |
+
"postfix": null,
|
535 |
+
"prefix": "pytorch_model.bin",
|
536 |
+
"rate": null,
|
537 |
+
"total": 982141993,
|
538 |
+
"unit": "B",
|
539 |
+
"unit_divisor": 1000,
|
540 |
+
"unit_scale": true
|
541 |
+
},
|
542 |
+
"application/vnd.jupyter.widget-view+json": {
|
543 |
+
"model_id": "eafcdd2e978a42659bef0a50f82a7055",
|
544 |
+
"version_major": 2,
|
545 |
+
"version_minor": 0
|
546 |
+
},
|
547 |
+
"text/plain": [
|
548 |
+
"pytorch_model.bin: 0%| | 0.00/982M [00:00<?, ?B/s]"
|
549 |
+
]
|
550 |
+
},
|
551 |
+
"metadata": {},
|
552 |
+
"output_type": "display_data"
|
553 |
+
}
|
554 |
+
],
|
555 |
+
"source": [
|
556 |
+
"from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer\n",
|
557 |
+
"\n",
|
558 |
+
"\n",
|
559 |
+
"feature_extractor = ViTFeatureExtractor.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
560 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
561 |
+
"model = VisionEncoderDecoderModel.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")"
|
562 |
+
]
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"cell_type": "markdown",
|
566 |
+
"metadata": {
|
567 |
+
"id": "uYLlkIWgqGwX"
|
568 |
+
},
|
569 |
+
"source": [
|
570 |
+
"## Import the necessary libraries and load the CLIP model:"
|
571 |
+
]
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"cell_type": "code",
|
575 |
+
"execution_count": 7,
|
576 |
+
"metadata": {
|
577 |
+
"id": "dLxPnrUQqDZU",
|
578 |
+
"tags": []
|
579 |
+
},
|
580 |
+
"outputs": [
|
581 |
+
{
|
582 |
+
"name": "stderr",
|
583 |
+
"output_type": "stream",
|
584 |
+
"text": [
|
585 |
+
"100%|βββββββββββββββββββββββββββββββββββββββ| 338M/338M [00:12<00:00, 28.0MiB/s]\n"
|
586 |
+
]
|
587 |
+
}
|
588 |
+
],
|
589 |
+
"source": [
|
590 |
+
"from PIL import Image\n",
|
591 |
+
"import clip\n",
|
592 |
+
"import torch\n",
|
593 |
+
"\n",
|
594 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
595 |
+
"clip_model, preprocess = clip.load(\"ViT-B/32\", device=device)"
|
596 |
+
]
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"cell_type": "markdown",
|
600 |
+
"metadata": {
|
601 |
+
"id": "Gt1Q-d1iqM9F"
|
602 |
+
},
|
603 |
+
"source": [
|
604 |
+
"## Define a function to generate product descriptions:"
|
605 |
+
]
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"cell_type": "code",
|
609 |
+
"execution_count": 8,
|
610 |
+
"metadata": {
|
611 |
+
"id": "u2XdvaffqGMr",
|
612 |
+
"tags": []
|
613 |
+
},
|
614 |
+
"outputs": [
|
615 |
+
{
|
616 |
+
"name": "stderr",
|
617 |
+
"output_type": "stream",
|
618 |
+
"text": [
|
619 |
+
"We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.\n",
|
620 |
+
"You may ignore this warning if your `pad_token_id` (50256) is identical to the `bos_token_id` (50256), `eos_token_id` (50256), or the `sep_token_id` (None), and your input is not padded.\n"
|
621 |
+
]
|
622 |
+
}
|
623 |
+
],
|
624 |
+
"source": [
|
625 |
+
"image = Image.open(\"data/download.jpeg\")\n",
|
626 |
+
"pixel_values = feature_extractor(images=image, return_tensors=\"pt\").pixel_values\n",
|
627 |
+
"output_ids = model.generate(pixel_values, max_length=50, num_beams=4, early_stopping=True)\n",
|
628 |
+
"captions = tokenizer.batch_decode(output_ids, skip_special_tokens=True)"
|
629 |
+
]
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"cell_type": "code",
|
633 |
+
"execution_count": 9,
|
634 |
+
"metadata": {
|
635 |
+
"colab": {
|
636 |
+
"base_uri": "https://localhost:8080/"
|
637 |
+
},
|
638 |
+
"id": "lOf9lcUAqVlm",
|
639 |
+
"outputId": "d00cdc05-6652-4fba-b40c-03ad803d54e3",
|
640 |
+
"tags": []
|
641 |
+
},
|
642 |
+
"outputs": [
|
643 |
+
{
|
644 |
+
"name": "stdout",
|
645 |
+
"output_type": "stream",
|
646 |
+
"text": [
|
647 |
+
"a vase sitting on top of a table \n"
|
648 |
+
]
|
649 |
+
}
|
650 |
+
],
|
651 |
+
"source": [
|
652 |
+
"image = preprocess(image).unsqueeze(0).to(device)\n",
|
653 |
+
"with torch.no_grad():\n",
|
654 |
+
" image_features = clip_model.encode_image(image)\n",
|
655 |
+
"\n",
|
656 |
+
"text_inputs = torch.cat([clip.tokenize(caption).to(device) for caption in captions]).to(device)\n",
|
657 |
+
"with torch.no_grad():\n",
|
658 |
+
" text_features = clip_model.encode_text(text_inputs)\n",
|
659 |
+
"\n",
|
660 |
+
"similarity_scores = image_features @ text_features.T\n",
|
661 |
+
"best_caption_idx = similarity_scores.argmax().item()\n",
|
662 |
+
"product_description = captions[best_caption_idx]\n",
|
663 |
+
"print(product_description)"
|
664 |
+
]
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"cell_type": "markdown",
|
668 |
+
"metadata": {
|
669 |
+
"id": "RM6RXXvT4xSN"
|
670 |
+
},
|
671 |
+
"source": [
|
672 |
+
"# Using SigLip"
|
673 |
+
]
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"cell_type": "code",
|
677 |
+
"execution_count": 11,
|
678 |
+
"metadata": {
|
679 |
+
"tags": []
|
680 |
+
},
|
681 |
+
"outputs": [
|
682 |
+
{
|
683 |
+
"name": "stdout",
|
684 |
+
"output_type": "stream",
|
685 |
+
"text": [
|
686 |
+
"Collecting protobuf\n",
|
687 |
+
" Downloading protobuf-5.26.1-cp37-abi3-manylinux2014_x86_64.whl (302 kB)\n",
|
688 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 302 kB 4.3 MB/s eta 0:00:01\n",
|
689 |
+
"\u001b[?25hInstalling collected packages: protobuf\n",
|
690 |
+
"Successfully installed protobuf-5.26.1\n"
|
691 |
+
]
|
692 |
+
}
|
693 |
+
],
|
694 |
+
"source": [
|
695 |
+
"!pip install sentencepiece\n",
|
696 |
+
"!pip install protobuf"
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"cell_type": "code",
|
701 |
+
"execution_count": 12,
|
702 |
+
"metadata": {
|
703 |
+
"colab": {
|
704 |
+
"base_uri": "https://localhost:8080/"
|
705 |
+
},
|
706 |
+
"id": "fR9c1mv3qXGz",
|
707 |
+
"outputId": "5b222c53-e0f8-4545-f191-ad6a90ab1373",
|
708 |
+
"tags": []
|
709 |
+
},
|
710 |
+
"outputs": [
|
711 |
+
{
|
712 |
+
"name": "stderr",
|
713 |
+
"output_type": "stream",
|
714 |
+
"text": [
|
715 |
+
"/home/user/miniconda/lib/python3.9/site-packages/transformers/models/vit/feature_extraction_vit.py:28: FutureWarning: The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use ViTImageProcessor instead.\n",
|
716 |
+
" warnings.warn(\n"
|
717 |
+
]
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"name": "stdout",
|
721 |
+
"output_type": "stream",
|
722 |
+
"text": [
|
723 |
+
"an old fashioned clock sitting on top of a table \n"
|
724 |
+
]
|
725 |
+
}
|
726 |
+
],
|
727 |
+
"source": [
|
728 |
+
"from transformers import AutoProcessor, AutoModel, VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer\n",
|
729 |
+
"import torch\n",
|
730 |
+
"from PIL import Image\n",
|
731 |
+
"\n",
|
732 |
+
"\n",
|
733 |
+
"model = AutoModel.from_pretrained(\"google/siglip-base-patch16-224\")\n",
|
734 |
+
"processor = AutoProcessor.from_pretrained(\"google/siglip-base-patch16-224\")\n",
|
735 |
+
"\n",
|
736 |
+
"\n",
|
737 |
+
"image = Image.open(\"data/avito4.jpeg\")\n",
|
738 |
+
"inputs = processor(images=image, return_tensors=\"pt\")\n",
|
739 |
+
"\n",
|
740 |
+
"\n",
|
741 |
+
"feature_extractor = ViTFeatureExtractor.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
742 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
743 |
+
"model = VisionEncoderDecoderModel.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
744 |
+
"\n",
|
745 |
+
"pixel_values = feature_extractor(images=image, return_tensors=\"pt\").pixel_values\n",
|
746 |
+
"output_ids = model.generate(pixel_values, max_length=100, num_beams=5, early_stopping=True)\n",
|
747 |
+
"captions = tokenizer.batch_decode(output_ids, skip_special_tokens=True)\n",
|
748 |
+
"\n",
|
749 |
+
"image = preprocess(image).unsqueeze(0).to(device)\n",
|
750 |
+
"with torch.no_grad():\n",
|
751 |
+
" image_features = clip_model.encode_image(image)\n",
|
752 |
+
"\n",
|
753 |
+
"text_inputs = torch.cat([clip.tokenize(caption).to(device) for caption in captions]).to(device)\n",
|
754 |
+
"with torch.no_grad():\n",
|
755 |
+
" text_features = clip_model.encode_text(text_inputs)\n",
|
756 |
+
"\n",
|
757 |
+
"similarity_scores = image_features @ text_features.T\n",
|
758 |
+
"best_caption_idx = similarity_scores.argmax().item()\n",
|
759 |
+
"product_description = captions[best_caption_idx]\n",
|
760 |
+
"print(product_description)\n",
|
761 |
+
"\n",
|
762 |
+
"# a vase sitting on a shelf in a store => thuya\n",
|
763 |
+
"# a wooden bench sitting on top of a wooden floor => avito\n",
|
764 |
+
"## two old fashioned vases sitting next to each other => avito2\n",
|
765 |
+
"## three wooden vases sitting on top of a wooden floor => avito3\n",
|
766 |
+
"# an old fashioned clock sitting on top of a table => avito4\n",
|
767 |
+
"\n"
|
768 |
+
]
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"cell_type": "code",
|
772 |
+
"execution_count": null,
|
773 |
+
"metadata": {
|
774 |
+
"colab": {
|
775 |
+
"base_uri": "https://localhost:8080/"
|
776 |
+
},
|
777 |
+
"id": "fR9c1mv3qXGz",
|
778 |
+
"outputId": "5b222c53-e0f8-4545-f191-ad6a90ab1373",
|
779 |
+
"tags": []
|
780 |
+
},
|
781 |
+
"outputs": [],
|
782 |
+
"source": []
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"cell_type": "markdown",
|
786 |
+
"metadata": {
|
787 |
+
"id": "qRkGmKyYB7DM"
|
788 |
+
},
|
789 |
+
"source": [
|
790 |
+
"# Implemeting LLaVa"
|
791 |
+
]
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"cell_type": "markdown",
|
795 |
+
"metadata": {
|
796 |
+
"id": "u6jq8q__zoOt"
|
797 |
+
},
|
798 |
+
"source": [
|
799 |
+
"https://colab.research.google.com/drive/1veefV17NcD1S4ou4nF8ABkfm8-TgU0Dr#scrollTo=XN2vJCPZk1UY"
|
800 |
+
]
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"cell_type": "code",
|
804 |
+
"execution_count": null,
|
805 |
+
"metadata": {
|
806 |
+
"id": "QyO2UcBjzl71"
|
807 |
+
},
|
808 |
+
"outputs": [],
|
809 |
+
"source": []
|
810 |
+
}
|
811 |
+
],
|
812 |
+
"metadata": {
|
813 |
+
"colab": {
|
814 |
+
"provenance": []
|
815 |
+
},
|
816 |
+
"kernelspec": {
|
817 |
+
"display_name": "Python 3 (ipykernel)",
|
818 |
+
"language": "python",
|
819 |
+
"name": "python3"
|
820 |
+
},
|
821 |
+
"language_info": {
|
822 |
+
"codemirror_mode": {
|
823 |
+
"name": "ipython",
|
824 |
+
"version": 3
|
825 |
+
},
|
826 |
+
"file_extension": ".py",
|
827 |
+
"mimetype": "text/x-python",
|
828 |
+
"name": "python",
|
829 |
+
"nbconvert_exporter": "python",
|
830 |
+
"pygments_lexer": "ipython3",
|
831 |
+
"version": "3.9.5"
|
832 |
+
}
|
833 |
+
},
|
834 |
+
"nbformat": 4,
|
835 |
+
"nbformat_minor": 4
|
836 |
+
}
|
notebooks/LLaVa (1).ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/SAM (1).ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|