artigen / SAM.py
CallmeKaito's picture
Upload 4 files
493c54a verified
raw
history blame
5.53 kB
#!/usr/bin/env python
# coding: utf-8
# # Utility functions
# In[ ]:
import numpy as np
import matplotlib.pyplot as plt
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
def show_boxes_on_image(raw_image, boxes):
plt.figure(figsize=(10,10))
plt.imshow(raw_image)
for box in boxes:
show_box(box, plt.gca())
plt.axis('on')
plt.show()
def show_points_on_image(raw_image, input_points, input_labels=None):
plt.figure(figsize=(10,10))
plt.imshow(raw_image)
input_points = np.array(input_points)
if input_labels is None:
labels = np.ones_like(input_points[:, 0])
else:
labels = np.array(input_labels)
show_points(input_points, labels, plt.gca())
plt.axis('on')
plt.show()
def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None):
plt.figure(figsize=(10,10))
plt.imshow(raw_image)
input_points = np.array(input_points)
if input_labels is None:
labels = np.ones_like(input_points[:, 0])
else:
labels = np.array(input_labels)
show_points(input_points, labels, plt.gca())
for box in boxes:
show_box(box, plt.gca())
plt.axis('on')
plt.show()
def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None):
plt.figure(figsize=(10,10))
plt.imshow(raw_image)
input_points = np.array(input_points)
if input_labels is None:
labels = np.ones_like(input_points[:, 0])
else:
labels = np.array(input_labels)
show_points(input_points, labels, plt.gca())
for box in boxes:
show_box(box, plt.gca())
plt.axis('on')
plt.show()
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_masks_on_image(raw_image, masks, scores):
if len(masks.shape) == 4:
masks = masks.squeeze()
if scores.shape[0] == 1:
scores = scores.squeeze()
nb_predictions = scores.shape[-1]
fig, axes = plt.subplots(1, nb_predictions, figsize=(15, 15))
for i, (mask, score) in enumerate(zip(masks, scores)):
mask = mask.cpu().detach()
axes[i].imshow(np.array(raw_image))
show_mask(mask, axes[i])
axes[i].title.set_text(f"Mask {i+1}, Score: {score.item():.3f}")
axes[i].axis("off")
plt.show()
# # Model loading
# In[ ]:
import torch
from transformers import SamModel, SamProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
# In[ ]:
from PIL import Image
import requests
img_url = "thuya.jpeg"
raw_image = Image.open(img_url)
plt.imshow(raw_image)
# ## Step 1: Retrieve the image embeddings
# In[ ]:
inputs = processor(raw_image, return_tensors="pt").to(device)
image_embeddings = model.get_image_embeddings(inputs["pixel_values"])
# In[ ]:
input_points = [[[200, 300]]]
show_points_on_image(raw_image, input_points[0])
# In[ ]:
inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(device)
# pop the pixel_values as they are not neded
inputs.pop("pixel_values", None)
inputs.update({"image_embeddings": image_embeddings})
with torch.no_grad():
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
scores = outputs.iou_scores
# In[ ]:
show_masks_on_image(raw_image, masks[0], scores)
# ## Export the masked images
# In[92]:
import cv2
if len(masks[0].shape) == 4:
masks[0] = masks[0].squeeze()
if scores.shape[0] == 1:
scores = scores.squeeze()
nb_predictions = scores.shape[-1]
fig, axes = plt.subplots(1, nb_predictions, figsize=(15, 15))
for i, (mask, score) in enumerate(zip(masks[0], scores)):
mask = mask.cpu().detach()
axes[i].imshow(np.array(raw_image))
# show_mask(mask, axes[i])
mask_image = (mask.numpy() * 255).astype(np.uint8) # Convert to uint8 format
cv2.imwrite('mask.png', mask_image)
image = cv2.imread('thuya.jpeg')
color_mask = np.zeros_like(image)
color_mask[mask > 0.5] = [30, 144, 255] # Choose any color you like
masked_image = cv2.addWeighted(image, 0.6, color_mask, 0.4, 0)
color = np.array([30/255, 144/255, 255/255])
#mask_image = * color.reshape(1, 1, -1)
new_image = -image* np.tile(mask_image[...,None], 3)
cv2.imwrite('masked_image2.png', cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR))
# In[85]:
.shape