Spaces:
Running
Running
Theivaprakasham Hari
commited on
Commit
•
90f3f7a
1
Parent(s):
66634a1
added
Browse files- .gitattributes +1 -0
- app.py +276 -0
- embed_texts.sh +12 -0
- example1_Pararge_aegeria.jpg +0 -0
- gitattributes +39 -0
- gitignore +2 -0
- lib.py +170 -0
- make_txt_embedding.py +193 -0
- name_lookup.json +3 -0
- requirements.txt +4 -0
- templates.py +82 -0
- test_lib.py +481 -0
- txt_emb.npy +3 -0
- txt_emb_species.json +3 -0
- txt_emb_species.npy +3 -0
.gitattributes
CHANGED
@@ -6,6 +6,7 @@
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
10 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
11 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
12 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import heapq
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from open_clip import create_model, get_tokenizer
|
12 |
+
from torchvision import transforms
|
13 |
+
|
14 |
+
from templates import openai_imagenet_template
|
15 |
+
|
16 |
+
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
17 |
+
logging.basicConfig(level=logging.INFO, format=log_format)
|
18 |
+
logger = logging.getLogger()
|
19 |
+
|
20 |
+
|
21 |
+
model_str = "hf-hub:imageomics/bioclip"
|
22 |
+
tokenizer_str = "ViT-B-16"
|
23 |
+
|
24 |
+
txt_emb_npy = r"txt_emb_species.npy"
|
25 |
+
txt_names_json = r"txt_emb_species.json"
|
26 |
+
|
27 |
+
|
28 |
+
min_prob = 1e-9
|
29 |
+
k = 5
|
30 |
+
|
31 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
+
|
33 |
+
preprocess_img = transforms.Compose(
|
34 |
+
[
|
35 |
+
transforms.ToTensor(),
|
36 |
+
transforms.Resize((224, 224), antialias=True),
|
37 |
+
transforms.Normalize(
|
38 |
+
mean=(0.48145466, 0.4578275, 0.40821073),
|
39 |
+
std=(0.26862954, 0.26130258, 0.27577711),
|
40 |
+
),
|
41 |
+
]
|
42 |
+
)
|
43 |
+
|
44 |
+
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
|
45 |
+
|
46 |
+
open_domain_examples = [
|
47 |
+
|
48 |
+
['example1_Pararge_aegeria.jpg', "Species"]
|
49 |
+
|
50 |
+
]
|
51 |
+
zero_shot_examples = [
|
52 |
+
['example1_Pararge_aegeria.jpg', "Pararge aegeria \nPieris brassicae \nSatyrium w-album \nDanaus chrysippus"]
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
def indexed(lst, indices):
|
57 |
+
return [lst[i] for i in indices]
|
58 |
+
|
59 |
+
|
60 |
+
@torch.no_grad()
|
61 |
+
def get_txt_features(classnames, templates):
|
62 |
+
all_features = []
|
63 |
+
for classname in classnames:
|
64 |
+
txts = [template(classname) for template in templates]
|
65 |
+
txts = tokenizer(txts).to(device)
|
66 |
+
txt_features = model.encode_text(txts)
|
67 |
+
txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
|
68 |
+
txt_features /= txt_features.norm()
|
69 |
+
all_features.append(txt_features)
|
70 |
+
all_features = torch.stack(all_features, dim=1)
|
71 |
+
return all_features
|
72 |
+
|
73 |
+
|
74 |
+
@torch.no_grad()
|
75 |
+
def zero_shot_classification(img, cls_str: str) -> dict[str, float]:
|
76 |
+
classes = [cls.strip() for cls in cls_str.split("\n") if cls.strip()]
|
77 |
+
txt_features = get_txt_features(classes, openai_imagenet_template)
|
78 |
+
|
79 |
+
img = preprocess_img(img).to(device)
|
80 |
+
img_features = model.encode_image(img.unsqueeze(0))
|
81 |
+
img_features = F.normalize(img_features, dim=-1)
|
82 |
+
|
83 |
+
logits = (model.logit_scale.exp() * img_features @ txt_features).squeeze()
|
84 |
+
probs = F.softmax(logits, dim=0).to("cpu").tolist()
|
85 |
+
return {cls: prob for cls, prob in zip(classes, probs)}
|
86 |
+
|
87 |
+
|
88 |
+
def format_name(taxon, common):
|
89 |
+
taxon = " ".join(taxon)
|
90 |
+
if not common:
|
91 |
+
return taxon
|
92 |
+
return f"{taxon} ({common})"
|
93 |
+
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def open_domain_classification(img, rank: int) -> dict[str, float]:
|
97 |
+
"""
|
98 |
+
Predicts from the entire tree of life.
|
99 |
+
If targeting a higher rank than species, then this function predicts among all
|
100 |
+
species, then sums up species-level probabilities for the given rank.
|
101 |
+
"""
|
102 |
+
img = preprocess_img(img).to(device)
|
103 |
+
img_features = model.encode_image(img.unsqueeze(0))
|
104 |
+
img_features = F.normalize(img_features, dim=-1)
|
105 |
+
|
106 |
+
logits = (model.logit_scale.exp() * img_features @ txt_emb).squeeze()
|
107 |
+
probs = F.softmax(logits, dim=0)
|
108 |
+
|
109 |
+
# If predicting species, no need to sum probabilities.
|
110 |
+
if rank + 1 == len(ranks):
|
111 |
+
topk = probs.topk(k)
|
112 |
+
return {
|
113 |
+
format_name(*txt_names[i]): prob for i, prob in zip(topk.indices, topk.values)
|
114 |
+
}
|
115 |
+
|
116 |
+
# Sum up by the rank
|
117 |
+
output = collections.defaultdict(float)
|
118 |
+
for i in torch.nonzero(probs > min_prob).squeeze():
|
119 |
+
output[" ".join(txt_names[i][0][: rank + 1])] += probs[i]
|
120 |
+
|
121 |
+
topk_names = heapq.nlargest(k, output, key=output.get)
|
122 |
+
|
123 |
+
return {name: output[name] for name in topk_names}
|
124 |
+
|
125 |
+
|
126 |
+
def change_output(choice):
|
127 |
+
return gr.Label(num_top_classes=k, label=ranks[choice], show_label=True, value=None)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
js = """
|
132 |
+
function createGradioAnimation() {
|
133 |
+
var container = document.createElement('div');
|
134 |
+
container.id = 'gradio-animation';
|
135 |
+
container.style.fontSize = '2em';
|
136 |
+
container.style.fontWeight = 'bold';
|
137 |
+
container.style.textAlign = 'center';
|
138 |
+
container.style.marginBottom = '20px';
|
139 |
+
|
140 |
+
var text = 'Global Species Identifier: Powered by Artificial Intelligence';
|
141 |
+
for (var i = 0; i < text.length; i++) {
|
142 |
+
(function(i){
|
143 |
+
setTimeout(function(){
|
144 |
+
var letter = document.createElement('span');
|
145 |
+
letter.style.opacity = '0';
|
146 |
+
letter.style.transition = 'opacity 0.5s';
|
147 |
+
letter.innerText = text[i];
|
148 |
+
|
149 |
+
container.appendChild(letter);
|
150 |
+
|
151 |
+
setTimeout(function() {
|
152 |
+
letter.style.opacity = '1';
|
153 |
+
}, 50);
|
154 |
+
}, i * 50);
|
155 |
+
})(i);
|
156 |
+
}
|
157 |
+
|
158 |
+
var gradioContainer = document.querySelector('.gradio-container');
|
159 |
+
gradioContainer.insertBefore(container, gradioContainer.firstChild);
|
160 |
+
|
161 |
+
return 'Animation created';
|
162 |
+
}
|
163 |
+
"""
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
logger.info("Starting.")
|
167 |
+
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
168 |
+
model = model.to(device)
|
169 |
+
logger.info("Created model.")
|
170 |
+
|
171 |
+
# model = torch.compile(model)
|
172 |
+
logger.info("Compiled model.")
|
173 |
+
|
174 |
+
tokenizer = get_tokenizer(tokenizer_str)
|
175 |
+
|
176 |
+
txt_emb = torch.from_numpy(np.load(txt_emb_npy, mmap_mode="r")).to(device)
|
177 |
+
with open(txt_names_json) as fd:
|
178 |
+
txt_names = json.load(fd)
|
179 |
+
|
180 |
+
done = txt_emb.any(axis=0).sum().item()
|
181 |
+
total = txt_emb.shape[1]
|
182 |
+
status_msg = ""
|
183 |
+
if done != total:
|
184 |
+
status_msg = f"{done}/{total} ({done / total * 100:.1f}%) indexed"
|
185 |
+
|
186 |
+
with gr.Blocks(title='Global Species Identifier: Powered by Artificial Intelligence', css="footer {visibility: hidden}", js=js) as app:
|
187 |
+
|
188 |
+
gr.Markdown(
|
189 |
+
"""
|
190 |
+
Upload an image of any plant, animal, or other organism, and our Artificial Intelligence-powered tool will identify the species. Our database covers species from around the world, aiming to support biodiversity awareness and conservation efforts.
|
191 |
+
|
192 |
+
Features include:
|
193 |
+
- **Instant identification** of plants, animals, and other organisms.
|
194 |
+
- **Detailed information** on species, including habitat, distribution, and conservation status.
|
195 |
+
- An **interactive, user-friendly interface** designed for both experts and enthusiasts.
|
196 |
+
- **Continuous learning and improvement** of AI models to expand the app's knowledge base and accuracy.
|
197 |
+
|
198 |
+
Join us in exploring the diversity of life on Earth, powered by the intelligence of technology. Start your journey of discovery today!
|
199 |
+
|
200 |
+
""")
|
201 |
+
img_input = gr.Image()
|
202 |
+
|
203 |
+
with gr.Tab("Open-Ended"):
|
204 |
+
with gr.Row():
|
205 |
+
with gr.Column():
|
206 |
+
rank_dropdown = gr.Dropdown(
|
207 |
+
label="Taxonomic Rank",
|
208 |
+
info="Which taxonomic rank to predict. Fine-grained ranks (genus, species) are more challenging.",
|
209 |
+
choices=ranks,
|
210 |
+
value="Species",
|
211 |
+
type="index",
|
212 |
+
)
|
213 |
+
open_domain_btn = gr.Button("Submit", variant="primary")
|
214 |
+
with gr.Column():
|
215 |
+
open_domain_output = gr.Label(
|
216 |
+
num_top_classes=k,
|
217 |
+
label="Prediction",
|
218 |
+
show_label=True,
|
219 |
+
value=None,
|
220 |
+
)
|
221 |
+
|
222 |
+
with gr.Row():
|
223 |
+
gr.Examples(
|
224 |
+
examples=open_domain_examples,
|
225 |
+
inputs=[img_input, rank_dropdown],
|
226 |
+
cache_examples=True,
|
227 |
+
fn=open_domain_classification,
|
228 |
+
outputs=[open_domain_output],
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
with gr.Tab("Zero-Shot"):
|
233 |
+
with gr.Row():
|
234 |
+
with gr.Column():
|
235 |
+
classes_txt = gr.Textbox(
|
236 |
+
placeholder= "Pararge aegeria \nPieris brassicae \nSatyrium w-album \nDanaus chrysippus\n...",
|
237 |
+
lines=3,
|
238 |
+
label="Classes",
|
239 |
+
show_label=True,
|
240 |
+
info="Use taxonomic names where possible; include common names if possible.",
|
241 |
+
)
|
242 |
+
zero_shot_btn = gr.Button("Submit", variant="primary")
|
243 |
+
|
244 |
+
with gr.Column():
|
245 |
+
zero_shot_output = gr.Label(
|
246 |
+
num_top_classes=k, label="Prediction", show_label=True
|
247 |
+
)
|
248 |
+
|
249 |
+
with gr.Row():
|
250 |
+
gr.Examples(
|
251 |
+
examples=zero_shot_examples,
|
252 |
+
inputs=[img_input, classes_txt],
|
253 |
+
cache_examples=True,
|
254 |
+
fn=zero_shot_classification,
|
255 |
+
outputs=[zero_shot_output],
|
256 |
+
)
|
257 |
+
|
258 |
+
|
259 |
+
rank_dropdown.change(
|
260 |
+
fn=change_output, inputs=rank_dropdown, outputs=[open_domain_output]
|
261 |
+
)
|
262 |
+
|
263 |
+
open_domain_btn.click(
|
264 |
+
fn=open_domain_classification,
|
265 |
+
inputs=[img_input, rank_dropdown],
|
266 |
+
outputs=[open_domain_output],
|
267 |
+
)
|
268 |
+
|
269 |
+
zero_shot_btn.click(
|
270 |
+
fn=zero_shot_classification,
|
271 |
+
inputs=[img_input, classes_txt],
|
272 |
+
outputs=zero_shot_output,
|
273 |
+
)
|
274 |
+
|
275 |
+
app.queue(max_size=20)
|
276 |
+
app.launch(show_api=False)
|
embed_texts.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
#SBATCH --nodes=1
|
3 |
+
#SBATCH --account=PAS2136
|
4 |
+
#SBATCH --gpus-per-node=1
|
5 |
+
#SBATCH --ntasks-per-node=10
|
6 |
+
#SBATCH --job-name=embed-treeoflife
|
7 |
+
#SBATCH --time=12:00:00
|
8 |
+
#SBATCH --partition=gpu
|
9 |
+
|
10 |
+
python make_txt_embedding.py \
|
11 |
+
--catalog-path /fs/ess/PAS2136/open_clip/data/evobio10m-v3.3/predicted-statistics.csv \
|
12 |
+
--out-path text_emb.bin
|
example1_Pararge_aegeria.jpg
ADDED
gitattributes
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
|
37 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.venv/
|
2 |
+
__pycache__/
|
lib.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Mostly a TaxonomicTree class that implements a taxonomy and some helpers for easily
|
3 |
+
walking and looking in the tree.
|
4 |
+
|
5 |
+
A tree is an arrangement of TaxonomicNodes.
|
6 |
+
|
7 |
+
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
import itertools
|
12 |
+
import json
|
13 |
+
|
14 |
+
|
15 |
+
class TaxonomicNode:
|
16 |
+
__slots__ = ("name", "index", "root", "_children")
|
17 |
+
|
18 |
+
def __init__(self, name, index, root):
|
19 |
+
self.name = name
|
20 |
+
self.index = index
|
21 |
+
self.root = root
|
22 |
+
self._children = {}
|
23 |
+
|
24 |
+
def add(self, name):
|
25 |
+
added = 0
|
26 |
+
if not name:
|
27 |
+
return added
|
28 |
+
|
29 |
+
first, rest = name[0], name[1:]
|
30 |
+
if first not in self._children:
|
31 |
+
self._children[first] = TaxonomicNode(first, self.root.size, self.root)
|
32 |
+
self.root.size += 1
|
33 |
+
|
34 |
+
self._children[first].add(rest)
|
35 |
+
|
36 |
+
def children(self, name):
|
37 |
+
if not name:
|
38 |
+
return set((child.name, child.index) for child in self._children.values())
|
39 |
+
|
40 |
+
first, rest = name[0], name[1:]
|
41 |
+
if first not in self._children:
|
42 |
+
return set()
|
43 |
+
|
44 |
+
return self._children[first].children(rest)
|
45 |
+
|
46 |
+
def descendants(self, prefix=None):
|
47 |
+
"""Iterates over all values in the subtree that match prefix."""
|
48 |
+
|
49 |
+
if not prefix:
|
50 |
+
yield (self.name,), self.index
|
51 |
+
for child in self._children.values():
|
52 |
+
for name, i in child.descendants():
|
53 |
+
yield (self.name, *name), i
|
54 |
+
return
|
55 |
+
|
56 |
+
first, rest = prefix[0], prefix[1:]
|
57 |
+
if first not in self._children:
|
58 |
+
return
|
59 |
+
|
60 |
+
for name, i in self._children[first].descendants(rest):
|
61 |
+
yield (self.name, *name), i
|
62 |
+
|
63 |
+
def values(self):
|
64 |
+
"""Iterates over all (name, i) pairs in the tree."""
|
65 |
+
yield (self.name,), self.index
|
66 |
+
|
67 |
+
for child in self._children.values():
|
68 |
+
for name, index in child.values():
|
69 |
+
yield (self.name, *name), index
|
70 |
+
|
71 |
+
@classmethod
|
72 |
+
def from_dict(cls, dct, root):
|
73 |
+
node = cls(dct["name"], dct["index"], root)
|
74 |
+
node._children = {
|
75 |
+
child["name"]: cls.from_dict(child, root) for child in dct["children"]
|
76 |
+
}
|
77 |
+
return node
|
78 |
+
|
79 |
+
|
80 |
+
class TaxonomicTree:
|
81 |
+
"""
|
82 |
+
Efficient structure for finding taxonomic names and their descendants.
|
83 |
+
Also returns an integer index i for each possible name.
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(self):
|
87 |
+
self.kingdoms = {}
|
88 |
+
self.size = 0
|
89 |
+
|
90 |
+
def add(self, name: list[str]):
|
91 |
+
if not name:
|
92 |
+
return
|
93 |
+
|
94 |
+
first, rest = name[0], name[1:]
|
95 |
+
if first not in self.kingdoms:
|
96 |
+
self.kingdoms[first] = TaxonomicNode(first, self.size, self)
|
97 |
+
self.size += 1
|
98 |
+
|
99 |
+
self.kingdoms[first].add(rest)
|
100 |
+
|
101 |
+
def children(self, name=None):
|
102 |
+
if not name:
|
103 |
+
return set(
|
104 |
+
(kingdom.name, kingdom.index) for kingdom in self.kingdoms.values()
|
105 |
+
)
|
106 |
+
|
107 |
+
first, rest = name[0], name[1:]
|
108 |
+
if first not in self.kingdoms:
|
109 |
+
return set()
|
110 |
+
|
111 |
+
return self.kingdoms[first].children(rest)
|
112 |
+
|
113 |
+
def descendants(self, prefix=None):
|
114 |
+
"""Iterates over all values in the tree that match prefix."""
|
115 |
+
if not prefix:
|
116 |
+
# Give them all the subnodes
|
117 |
+
for kingdom in self.kingdoms.values():
|
118 |
+
yield from kingdom.descendants()
|
119 |
+
|
120 |
+
return
|
121 |
+
|
122 |
+
first, rest = prefix[0], prefix[1:]
|
123 |
+
if first not in self.kingdoms:
|
124 |
+
return
|
125 |
+
|
126 |
+
yield from self.kingdoms[first].descendants(rest)
|
127 |
+
|
128 |
+
def values(self):
|
129 |
+
"""Iterates over all (name, i) pairs in the tree."""
|
130 |
+
for kingdom in self.kingdoms.values():
|
131 |
+
yield from kingdom.values()
|
132 |
+
|
133 |
+
def __len__(self):
|
134 |
+
return self.size
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def from_dict(cls, dct):
|
138 |
+
tree = cls()
|
139 |
+
tree.kingdoms = {
|
140 |
+
kingdom["name"]: TaxonomicNode.from_dict(kingdom, tree)
|
141 |
+
for kingdom in dct["kingdoms"]
|
142 |
+
}
|
143 |
+
tree.size = dct["size"]
|
144 |
+
return tree
|
145 |
+
|
146 |
+
|
147 |
+
class TaxonomicJsonEncoder(json.JSONEncoder):
|
148 |
+
def default(self, obj):
|
149 |
+
if isinstance(obj, TaxonomicNode):
|
150 |
+
return {
|
151 |
+
"name": obj.name,
|
152 |
+
"index": obj.index,
|
153 |
+
"children": list(obj._children.values()),
|
154 |
+
}
|
155 |
+
elif isinstance(obj, TaxonomicTree):
|
156 |
+
return {
|
157 |
+
"kingdoms": list(obj.kingdoms.values()),
|
158 |
+
"size": obj.size,
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
super().default(self, obj)
|
162 |
+
|
163 |
+
|
164 |
+
def batched(iterable, n):
|
165 |
+
# batched('ABCDEFG', 3) --> ABC DEF G
|
166 |
+
if n < 1:
|
167 |
+
raise ValueError("n must be at least one")
|
168 |
+
it = iter(iterable)
|
169 |
+
while batch := tuple(itertools.islice(it, n)):
|
170 |
+
yield zip(*batch)
|
make_txt_embedding.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Makes the entire set of text emebeddings for all possible names in the tree of life.
|
3 |
+
Uses the catalog.csv file from TreeOfLife-10M.
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
import csv
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from open_clip import create_model, get_tokenizer
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
import lib
|
19 |
+
from templates import openai_imagenet_template
|
20 |
+
|
21 |
+
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
22 |
+
logging.basicConfig(level=logging.INFO, format=log_format)
|
23 |
+
logger = logging.getLogger()
|
24 |
+
|
25 |
+
model_str = "hf-hub:imageomics/bioclip"
|
26 |
+
tokenizer_str = "ViT-B-16"
|
27 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
+
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
|
30 |
+
|
31 |
+
|
32 |
+
@torch.no_grad()
|
33 |
+
def write_txt_features(name_lookup):
|
34 |
+
if os.path.isfile(args.out_path):
|
35 |
+
all_features = np.load(args.out_path)
|
36 |
+
else:
|
37 |
+
all_features = np.zeros((512, len(name_lookup)), dtype=np.float32)
|
38 |
+
|
39 |
+
batch_size = args.batch_size // len(openai_imagenet_template)
|
40 |
+
for batch, (names, indices) in enumerate(
|
41 |
+
tqdm(
|
42 |
+
lib.batched(name_lookup.values(), batch_size),
|
43 |
+
desc="txt feats",
|
44 |
+
total=len(name_lookup) // batch_size,
|
45 |
+
)
|
46 |
+
):
|
47 |
+
# Skip if any non-zero elements
|
48 |
+
if all_features[:, indices].any():
|
49 |
+
logger.info(f"Skipping batch {batch}")
|
50 |
+
continue
|
51 |
+
|
52 |
+
txts = [
|
53 |
+
template(name) for name in names for template in openai_imagenet_template
|
54 |
+
]
|
55 |
+
txts = tokenizer(txts).to(device)
|
56 |
+
txt_features = model.encode_text(txts)
|
57 |
+
txt_features = torch.reshape(
|
58 |
+
txt_features, (len(names), len(openai_imagenet_template), 512)
|
59 |
+
)
|
60 |
+
txt_features = F.normalize(txt_features, dim=2).mean(dim=1)
|
61 |
+
txt_features /= txt_features.norm(dim=1, keepdim=True)
|
62 |
+
all_features[:, indices] = txt_features.T.cpu().numpy()
|
63 |
+
|
64 |
+
if batch % 100 == 0:
|
65 |
+
np.save(args.out_path, all_features)
|
66 |
+
|
67 |
+
np.save(args.out_path, all_features)
|
68 |
+
|
69 |
+
|
70 |
+
def convert_txt_features_to_avgs(name_lookup):
|
71 |
+
assert os.path.isfile(args.out_path)
|
72 |
+
|
73 |
+
# Put that big boy on the GPU. We're going fast.
|
74 |
+
all_features = torch.from_numpy(np.load(args.out_path)).to(device)
|
75 |
+
logger.info("Loaded text features from disk to %s.", device)
|
76 |
+
|
77 |
+
names_by_rank = [set() for rank in ranks]
|
78 |
+
for name, index in tqdm(name_lookup.values()):
|
79 |
+
i = len(name) - 1
|
80 |
+
names_by_rank[i].add((name, index))
|
81 |
+
|
82 |
+
zeroed = 0
|
83 |
+
for i, rank in reversed(list(enumerate(ranks))):
|
84 |
+
if rank == "Species":
|
85 |
+
continue
|
86 |
+
for name, index in tqdm(names_by_rank[i], desc=rank):
|
87 |
+
species = tuple(
|
88 |
+
zip(
|
89 |
+
*(
|
90 |
+
(d, i)
|
91 |
+
for d, i in name_lookup.descendants(prefix=name)
|
92 |
+
if len(d) >= 6
|
93 |
+
)
|
94 |
+
)
|
95 |
+
)
|
96 |
+
if not species:
|
97 |
+
logger.warning("No species for %s.", " ".join(name))
|
98 |
+
all_features[:, index] = 0.0
|
99 |
+
zeroed += 1
|
100 |
+
continue
|
101 |
+
|
102 |
+
values, indices = species
|
103 |
+
mean = all_features[:, indices].mean(dim=1)
|
104 |
+
all_features[:, index] = F.normalize(mean, dim=0)
|
105 |
+
|
106 |
+
out_path, ext = os.path.splitext(args.out_path)
|
107 |
+
np.save(f"{out_path}_avgs{ext}", all_features.cpu().numpy())
|
108 |
+
if zeroed:
|
109 |
+
logger.warning(
|
110 |
+
"Zeroed out %d nodes because they didn't have any genus or species-level labels.",
|
111 |
+
zeroed,
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
def convert_txt_features_to_species_only(name_lookup):
|
116 |
+
assert os.path.isfile(args.out_path)
|
117 |
+
|
118 |
+
all_features = np.load(args.out_path)
|
119 |
+
logger.info("Loaded text features from disk.")
|
120 |
+
|
121 |
+
species = [(d, i) for d, i in name_lookup.descendants() if len(d) == 7]
|
122 |
+
species_features = np.zeros((512, len(species)), dtype=np.float32)
|
123 |
+
species_names = [""] * len(species)
|
124 |
+
|
125 |
+
for new_i, (name, old_i) in enumerate(tqdm(species)):
|
126 |
+
species_features[:, new_i] = all_features[:, old_i]
|
127 |
+
species_names[new_i] = name
|
128 |
+
|
129 |
+
out_path, ext = os.path.splitext(args.out_path)
|
130 |
+
np.save(f"{out_path}_species{ext}", species_features)
|
131 |
+
with open(f"{out_path}_species.json", "w") as fd:
|
132 |
+
json.dump(species_names, fd, indent=2)
|
133 |
+
|
134 |
+
|
135 |
+
def get_name_lookup(catalog_path, cache_path):
|
136 |
+
if os.path.isfile(cache_path):
|
137 |
+
with open(cache_path) as fd:
|
138 |
+
lookup = lib.TaxonomicTree.from_dict(json.load(fd))
|
139 |
+
return lookup
|
140 |
+
|
141 |
+
lookup = lib.TaxonomicTree()
|
142 |
+
|
143 |
+
with open(catalog_path) as fd:
|
144 |
+
reader = csv.DictReader(fd)
|
145 |
+
for row in tqdm(reader, desc="catalog"):
|
146 |
+
name = [
|
147 |
+
row["kingdom"],
|
148 |
+
row["phylum"],
|
149 |
+
row["class"],
|
150 |
+
row["order"],
|
151 |
+
row["family"],
|
152 |
+
row["genus"],
|
153 |
+
row["species"],
|
154 |
+
]
|
155 |
+
if any(not value for value in name):
|
156 |
+
name = name[: name.index("")]
|
157 |
+
lookup.add(name)
|
158 |
+
|
159 |
+
with open(args.name_cache_path, "w") as fd:
|
160 |
+
json.dump(lookup, fd, cls=lib.TaxonomicJsonEncoder)
|
161 |
+
|
162 |
+
return lookup
|
163 |
+
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
parser = argparse.ArgumentParser()
|
167 |
+
parser.add_argument(
|
168 |
+
"--catalog-path",
|
169 |
+
help="Path to the catalog.csv file from TreeOfLife-10M.",
|
170 |
+
required=True,
|
171 |
+
)
|
172 |
+
parser.add_argument("--out-path", help="Path to the output file.", required=True)
|
173 |
+
parser.add_argument(
|
174 |
+
"--name-cache-path",
|
175 |
+
help="Path to the name cache file.",
|
176 |
+
default="name_lookup.json",
|
177 |
+
)
|
178 |
+
parser.add_argument("--batch-size", help="Batch size.", default=2**15, type=int)
|
179 |
+
args = parser.parse_args()
|
180 |
+
|
181 |
+
name_lookup = get_name_lookup(args.catalog_path, cache_path=args.name_cache_path)
|
182 |
+
logger.info("Got name lookup.")
|
183 |
+
|
184 |
+
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
185 |
+
model = model.to(device)
|
186 |
+
logger.info("Created model.")
|
187 |
+
model = torch.compile(model)
|
188 |
+
logger.info("Compiled model.")
|
189 |
+
|
190 |
+
tokenizer = get_tokenizer(tokenizer_str)
|
191 |
+
write_txt_features(name_lookup)
|
192 |
+
convert_txt_features_to_avgs(name_lookup)
|
193 |
+
convert_txt_features_to_species_only(name_lookup)
|
name_lookup.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20d731d9d901f1c17927187bc87e4a2513279845a1a6ba5982dbf779f2ac1434
|
3 |
+
size 26462858
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
open_clip_torch
|
2 |
+
torchvision
|
3 |
+
torch
|
4 |
+
gradio
|
templates.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai_imagenet_template = [
|
2 |
+
lambda c: f"a bad photo of a {c}.",
|
3 |
+
lambda c: f"a photo of many {c}.",
|
4 |
+
lambda c: f"a sculpture of a {c}.",
|
5 |
+
lambda c: f"a photo of the hard to see {c}.",
|
6 |
+
lambda c: f"a low resolution photo of the {c}.",
|
7 |
+
lambda c: f"a rendering of a {c}.",
|
8 |
+
lambda c: f"graffiti of a {c}.",
|
9 |
+
lambda c: f"a bad photo of the {c}.",
|
10 |
+
lambda c: f"a cropped photo of the {c}.",
|
11 |
+
lambda c: f"a tattoo of a {c}.",
|
12 |
+
lambda c: f"the embroidered {c}.",
|
13 |
+
lambda c: f"a photo of a hard to see {c}.",
|
14 |
+
lambda c: f"a bright photo of a {c}.",
|
15 |
+
lambda c: f"a photo of a clean {c}.",
|
16 |
+
lambda c: f"a photo of a dirty {c}.",
|
17 |
+
lambda c: f"a dark photo of the {c}.",
|
18 |
+
lambda c: f"a drawing of a {c}.",
|
19 |
+
lambda c: f"a photo of my {c}.",
|
20 |
+
lambda c: f"the plastic {c}.",
|
21 |
+
lambda c: f"a photo of the cool {c}.",
|
22 |
+
lambda c: f"a close-up photo of a {c}.",
|
23 |
+
lambda c: f"a black and white photo of the {c}.",
|
24 |
+
lambda c: f"a painting of the {c}.",
|
25 |
+
lambda c: f"a painting of a {c}.",
|
26 |
+
lambda c: f"a pixelated photo of the {c}.",
|
27 |
+
lambda c: f"a sculpture of the {c}.",
|
28 |
+
lambda c: f"a bright photo of the {c}.",
|
29 |
+
lambda c: f"a cropped photo of a {c}.",
|
30 |
+
lambda c: f"a plastic {c}.",
|
31 |
+
lambda c: f"a photo of the dirty {c}.",
|
32 |
+
lambda c: f"a jpeg corrupted photo of a {c}.",
|
33 |
+
lambda c: f"a blurry photo of the {c}.",
|
34 |
+
lambda c: f"a photo of the {c}.",
|
35 |
+
lambda c: f"a good photo of the {c}.",
|
36 |
+
lambda c: f"a rendering of the {c}.",
|
37 |
+
lambda c: f"a {c} in a video game.",
|
38 |
+
lambda c: f"a photo of one {c}.",
|
39 |
+
lambda c: f"a doodle of a {c}.",
|
40 |
+
lambda c: f"a close-up photo of the {c}.",
|
41 |
+
lambda c: f"a photo of a {c}.",
|
42 |
+
lambda c: f"the origami {c}.",
|
43 |
+
lambda c: f"the {c} in a video game.",
|
44 |
+
lambda c: f"a sketch of a {c}.",
|
45 |
+
lambda c: f"a doodle of the {c}.",
|
46 |
+
lambda c: f"a origami {c}.",
|
47 |
+
lambda c: f"a low resolution photo of a {c}.",
|
48 |
+
lambda c: f"the toy {c}.",
|
49 |
+
lambda c: f"a rendition of the {c}.",
|
50 |
+
lambda c: f"a photo of the clean {c}.",
|
51 |
+
lambda c: f"a photo of a large {c}.",
|
52 |
+
lambda c: f"a rendition of a {c}.",
|
53 |
+
lambda c: f"a photo of a nice {c}.",
|
54 |
+
lambda c: f"a photo of a weird {c}.",
|
55 |
+
lambda c: f"a blurry photo of a {c}.",
|
56 |
+
lambda c: f"a cartoon {c}.",
|
57 |
+
lambda c: f"art of a {c}.",
|
58 |
+
lambda c: f"a sketch of the {c}.",
|
59 |
+
lambda c: f"a embroidered {c}.",
|
60 |
+
lambda c: f"a pixelated photo of a {c}.",
|
61 |
+
lambda c: f"itap of the {c}.",
|
62 |
+
lambda c: f"a jpeg corrupted photo of the {c}.",
|
63 |
+
lambda c: f"a good photo of a {c}.",
|
64 |
+
lambda c: f"a plushie {c}.",
|
65 |
+
lambda c: f"a photo of the nice {c}.",
|
66 |
+
lambda c: f"a photo of the small {c}.",
|
67 |
+
lambda c: f"a photo of the weird {c}.",
|
68 |
+
lambda c: f"the cartoon {c}.",
|
69 |
+
lambda c: f"art of the {c}.",
|
70 |
+
lambda c: f"a drawing of the {c}.",
|
71 |
+
lambda c: f"a photo of the large {c}.",
|
72 |
+
lambda c: f"a black and white photo of a {c}.",
|
73 |
+
lambda c: f"the plushie {c}.",
|
74 |
+
lambda c: f"a dark photo of a {c}.",
|
75 |
+
lambda c: f"itap of a {c}.",
|
76 |
+
lambda c: f"graffiti of the {c}.",
|
77 |
+
lambda c: f"a toy {c}.",
|
78 |
+
lambda c: f"itap of my {c}.",
|
79 |
+
lambda c: f"a photo of a cool {c}.",
|
80 |
+
lambda c: f"a photo of a small {c}.",
|
81 |
+
lambda c: f"a tattoo of the {c}.",
|
82 |
+
]
|
test_lib.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import lib
|
2 |
+
|
3 |
+
|
4 |
+
def test_taxonomiclookup_empty():
|
5 |
+
lookup = lib.TaxonomicTree()
|
6 |
+
assert lookup.size == 0
|
7 |
+
|
8 |
+
|
9 |
+
def test_taxonomiclookup_kingdom_size():
|
10 |
+
lookup = lib.TaxonomicTree()
|
11 |
+
|
12 |
+
lookup.add(("Animalia",))
|
13 |
+
|
14 |
+
assert lookup.size == 1
|
15 |
+
|
16 |
+
|
17 |
+
def test_taxonomiclookup_genus_size():
|
18 |
+
lookup = lib.TaxonomicTree()
|
19 |
+
|
20 |
+
lookup.add(
|
21 |
+
(
|
22 |
+
"Animalia",
|
23 |
+
"Chordata",
|
24 |
+
"Aves",
|
25 |
+
"Accipitriformes",
|
26 |
+
"Accipitridae",
|
27 |
+
"Halieaeetus",
|
28 |
+
)
|
29 |
+
)
|
30 |
+
|
31 |
+
assert lookup.size == 6
|
32 |
+
|
33 |
+
|
34 |
+
def test_taxonomictree_kingdom_children():
|
35 |
+
lookup = lib.TaxonomicTree()
|
36 |
+
|
37 |
+
lookup.add(
|
38 |
+
(
|
39 |
+
"Animalia",
|
40 |
+
"Chordata",
|
41 |
+
"Aves",
|
42 |
+
"Accipitriformes",
|
43 |
+
"Accipitridae",
|
44 |
+
"Halieaeetus",
|
45 |
+
)
|
46 |
+
)
|
47 |
+
|
48 |
+
expected = set([("Animalia", 0)])
|
49 |
+
actual = lookup.children()
|
50 |
+
assert actual == expected
|
51 |
+
|
52 |
+
|
53 |
+
def test_taxonomiclookup_children_of_animal_only_birds():
|
54 |
+
lookup = lib.TaxonomicTree()
|
55 |
+
|
56 |
+
lookup.add(
|
57 |
+
(
|
58 |
+
"Animalia",
|
59 |
+
"Chordata",
|
60 |
+
"Aves",
|
61 |
+
"Accipitriformes",
|
62 |
+
"Accipitridae",
|
63 |
+
"Halieaeetus",
|
64 |
+
"leucocephalus",
|
65 |
+
)
|
66 |
+
)
|
67 |
+
lookup.add(
|
68 |
+
(
|
69 |
+
"Animalia",
|
70 |
+
"Chordata",
|
71 |
+
"Aves",
|
72 |
+
"Strigiformes",
|
73 |
+
"Strigidae",
|
74 |
+
"Ninox",
|
75 |
+
"scutulata",
|
76 |
+
)
|
77 |
+
)
|
78 |
+
lookup.add(
|
79 |
+
(
|
80 |
+
"Animalia",
|
81 |
+
"Chordata",
|
82 |
+
"Aves",
|
83 |
+
"Strigiformes",
|
84 |
+
"Strigidae",
|
85 |
+
"Ninox",
|
86 |
+
"plesseni",
|
87 |
+
)
|
88 |
+
)
|
89 |
+
|
90 |
+
actual = lookup.children(("Animalia",))
|
91 |
+
expected = set([("Chordata", 1)])
|
92 |
+
assert actual == expected
|
93 |
+
|
94 |
+
|
95 |
+
def test_taxonomiclookup_children_of_animal():
|
96 |
+
lookup = lib.TaxonomicTree()
|
97 |
+
|
98 |
+
lookup.add(
|
99 |
+
(
|
100 |
+
"Animalia",
|
101 |
+
"Chordata",
|
102 |
+
"Aves",
|
103 |
+
"Accipitriformes",
|
104 |
+
"Accipitridae",
|
105 |
+
"Halieaeetus",
|
106 |
+
"leucocephalus",
|
107 |
+
)
|
108 |
+
)
|
109 |
+
lookup.add(
|
110 |
+
(
|
111 |
+
"Animalia",
|
112 |
+
"Chordata",
|
113 |
+
"Aves",
|
114 |
+
"Strigiformes",
|
115 |
+
"Strigidae",
|
116 |
+
"Ninox",
|
117 |
+
"scutulata",
|
118 |
+
)
|
119 |
+
)
|
120 |
+
lookup.add(
|
121 |
+
(
|
122 |
+
"Animalia",
|
123 |
+
"Chordata",
|
124 |
+
"Aves",
|
125 |
+
"Strigiformes",
|
126 |
+
"Strigidae",
|
127 |
+
"Ninox",
|
128 |
+
"plesseni",
|
129 |
+
)
|
130 |
+
)
|
131 |
+
lookup.add(
|
132 |
+
(
|
133 |
+
"Animalia",
|
134 |
+
"Chordata",
|
135 |
+
"Mammalia",
|
136 |
+
"Primates",
|
137 |
+
"Hominidae",
|
138 |
+
"Gorilla",
|
139 |
+
"gorilla",
|
140 |
+
)
|
141 |
+
)
|
142 |
+
lookup.add(
|
143 |
+
(
|
144 |
+
"Animalia",
|
145 |
+
"Arthropoda",
|
146 |
+
"Insecta",
|
147 |
+
"Hymenoptera",
|
148 |
+
"Apidae",
|
149 |
+
"Bombus",
|
150 |
+
"balteatus",
|
151 |
+
)
|
152 |
+
)
|
153 |
+
|
154 |
+
actual = lookup.children(("Animalia",))
|
155 |
+
expected = set([("Chordata", 1), ("Arthropoda", 17)])
|
156 |
+
assert actual == expected
|
157 |
+
|
158 |
+
|
159 |
+
def test_taxonomiclookup_children_of_chordata():
|
160 |
+
lookup = lib.TaxonomicTree()
|
161 |
+
|
162 |
+
lookup.add(
|
163 |
+
(
|
164 |
+
"Animalia",
|
165 |
+
"Chordata",
|
166 |
+
"Aves",
|
167 |
+
"Accipitriformes",
|
168 |
+
"Accipitridae",
|
169 |
+
"Halieaeetus",
|
170 |
+
"leucocephalus",
|
171 |
+
)
|
172 |
+
)
|
173 |
+
lookup.add(
|
174 |
+
(
|
175 |
+
"Animalia",
|
176 |
+
"Chordata",
|
177 |
+
"Aves",
|
178 |
+
"Strigiformes",
|
179 |
+
"Strigidae",
|
180 |
+
"Ninox",
|
181 |
+
"scutulata",
|
182 |
+
)
|
183 |
+
)
|
184 |
+
lookup.add(
|
185 |
+
(
|
186 |
+
"Animalia",
|
187 |
+
"Chordata",
|
188 |
+
"Aves",
|
189 |
+
"Strigiformes",
|
190 |
+
"Strigidae",
|
191 |
+
"Ninox",
|
192 |
+
"plesseni",
|
193 |
+
)
|
194 |
+
)
|
195 |
+
lookup.add(
|
196 |
+
(
|
197 |
+
"Animalia",
|
198 |
+
"Chordata",
|
199 |
+
"Mammalia",
|
200 |
+
"Primates",
|
201 |
+
"Hominidae",
|
202 |
+
"Gorilla",
|
203 |
+
"gorilla",
|
204 |
+
)
|
205 |
+
)
|
206 |
+
lookup.add(
|
207 |
+
(
|
208 |
+
"Animalia",
|
209 |
+
"Arthropoda",
|
210 |
+
"Insecta",
|
211 |
+
"Hymenoptera",
|
212 |
+
"Apidae",
|
213 |
+
"Bombus",
|
214 |
+
"balteatus",
|
215 |
+
)
|
216 |
+
)
|
217 |
+
|
218 |
+
actual = lookup.children(("Animalia", "Chordata"))
|
219 |
+
expected = set([("Aves", 2), ("Mammalia", 12)])
|
220 |
+
assert actual == expected
|
221 |
+
|
222 |
+
|
223 |
+
def test_taxonomiclookup_children_of_strigiformes():
|
224 |
+
lookup = lib.TaxonomicTree()
|
225 |
+
|
226 |
+
lookup.add(
|
227 |
+
(
|
228 |
+
"Animalia",
|
229 |
+
"Chordata",
|
230 |
+
"Aves",
|
231 |
+
"Accipitriformes",
|
232 |
+
"Accipitridae",
|
233 |
+
"Halieaeetus",
|
234 |
+
"leucocephalus",
|
235 |
+
)
|
236 |
+
)
|
237 |
+
lookup.add(
|
238 |
+
(
|
239 |
+
"Animalia",
|
240 |
+
"Chordata",
|
241 |
+
"Aves",
|
242 |
+
"Strigiformes",
|
243 |
+
"Strigidae",
|
244 |
+
"Ninox",
|
245 |
+
"scutulata",
|
246 |
+
)
|
247 |
+
)
|
248 |
+
lookup.add(
|
249 |
+
(
|
250 |
+
"Animalia",
|
251 |
+
"Chordata",
|
252 |
+
"Aves",
|
253 |
+
"Strigiformes",
|
254 |
+
"Strigidae",
|
255 |
+
"Ninox",
|
256 |
+
"plesseni",
|
257 |
+
)
|
258 |
+
)
|
259 |
+
lookup.add(
|
260 |
+
(
|
261 |
+
"Animalia",
|
262 |
+
"Chordata",
|
263 |
+
"Mammalia",
|
264 |
+
"Primates",
|
265 |
+
"Hominidae",
|
266 |
+
"Gorilla",
|
267 |
+
"gorilla",
|
268 |
+
)
|
269 |
+
)
|
270 |
+
lookup.add(
|
271 |
+
(
|
272 |
+
"Animalia",
|
273 |
+
"Arthropoda",
|
274 |
+
"Insecta",
|
275 |
+
"Hymenoptera",
|
276 |
+
"Apidae",
|
277 |
+
"Bombus",
|
278 |
+
"balteatus",
|
279 |
+
)
|
280 |
+
)
|
281 |
+
|
282 |
+
actual = lookup.children(("Animalia", "Chordata", "Aves", "Strigiformes"))
|
283 |
+
expected = set([("Strigidae", 8)])
|
284 |
+
assert actual == expected
|
285 |
+
|
286 |
+
|
287 |
+
def test_taxonomiclookup_children_of_ninox():
|
288 |
+
lookup = lib.TaxonomicTree()
|
289 |
+
|
290 |
+
lookup.add(
|
291 |
+
(
|
292 |
+
"Animalia",
|
293 |
+
"Chordata",
|
294 |
+
"Aves",
|
295 |
+
"Accipitriformes",
|
296 |
+
"Accipitridae",
|
297 |
+
"Halieaeetus",
|
298 |
+
"leucocephalus",
|
299 |
+
)
|
300 |
+
)
|
301 |
+
lookup.add(
|
302 |
+
(
|
303 |
+
"Animalia",
|
304 |
+
"Chordata",
|
305 |
+
"Aves",
|
306 |
+
"Strigiformes",
|
307 |
+
"Strigidae",
|
308 |
+
"Ninox",
|
309 |
+
"scutulata",
|
310 |
+
)
|
311 |
+
)
|
312 |
+
lookup.add(
|
313 |
+
(
|
314 |
+
"Animalia",
|
315 |
+
"Chordata",
|
316 |
+
"Aves",
|
317 |
+
"Strigiformes",
|
318 |
+
"Strigidae",
|
319 |
+
"Ninox",
|
320 |
+
"plesseni",
|
321 |
+
)
|
322 |
+
)
|
323 |
+
lookup.add(
|
324 |
+
(
|
325 |
+
"Animalia",
|
326 |
+
"Chordata",
|
327 |
+
"Mammalia",
|
328 |
+
"Primates",
|
329 |
+
"Hominidae",
|
330 |
+
"Gorilla",
|
331 |
+
"gorilla",
|
332 |
+
)
|
333 |
+
)
|
334 |
+
lookup.add(
|
335 |
+
(
|
336 |
+
"Animalia",
|
337 |
+
"Arthropoda",
|
338 |
+
"Insecta",
|
339 |
+
"Hymenoptera",
|
340 |
+
"Apidae",
|
341 |
+
"Bombus",
|
342 |
+
"balteatus",
|
343 |
+
)
|
344 |
+
)
|
345 |
+
|
346 |
+
actual = lookup.children(
|
347 |
+
("Animalia", "Chordata", "Aves", "Strigiformes", "Strigidae", "Ninox")
|
348 |
+
)
|
349 |
+
expected = set([("scutulata", 10), ("plesseni", 11)])
|
350 |
+
assert actual == expected
|
351 |
+
|
352 |
+
|
353 |
+
def test_taxonomiclookup_children_of_gorilla():
|
354 |
+
lookup = lib.TaxonomicTree()
|
355 |
+
|
356 |
+
lookup.add(
|
357 |
+
(
|
358 |
+
"Animalia",
|
359 |
+
"Chordata",
|
360 |
+
"Aves",
|
361 |
+
"Accipitriformes",
|
362 |
+
"Accipitridae",
|
363 |
+
"Halieaeetus",
|
364 |
+
"leucocephalus",
|
365 |
+
)
|
366 |
+
)
|
367 |
+
lookup.add(
|
368 |
+
(
|
369 |
+
"Animalia",
|
370 |
+
"Chordata",
|
371 |
+
"Aves",
|
372 |
+
"Strigiformes",
|
373 |
+
"Strigidae",
|
374 |
+
"Ninox",
|
375 |
+
"scutulata",
|
376 |
+
)
|
377 |
+
)
|
378 |
+
lookup.add(
|
379 |
+
(
|
380 |
+
"Animalia",
|
381 |
+
"Chordata",
|
382 |
+
"Aves",
|
383 |
+
"Strigiformes",
|
384 |
+
"Strigidae",
|
385 |
+
"Ninox",
|
386 |
+
"plesseni",
|
387 |
+
)
|
388 |
+
)
|
389 |
+
lookup.add(
|
390 |
+
(
|
391 |
+
"Animalia",
|
392 |
+
"Chordata",
|
393 |
+
"Mammalia",
|
394 |
+
"Primates",
|
395 |
+
"Hominidae",
|
396 |
+
"Gorilla",
|
397 |
+
"gorilla",
|
398 |
+
)
|
399 |
+
)
|
400 |
+
lookup.add(
|
401 |
+
(
|
402 |
+
"Animalia",
|
403 |
+
"Arthropoda",
|
404 |
+
"Insecta",
|
405 |
+
"Hymenoptera",
|
406 |
+
"Apidae",
|
407 |
+
"Bombus",
|
408 |
+
"balteatus",
|
409 |
+
)
|
410 |
+
)
|
411 |
+
|
412 |
+
actual = lookup.children(
|
413 |
+
(
|
414 |
+
"Animalia",
|
415 |
+
"Chordata",
|
416 |
+
"Mammalia",
|
417 |
+
"Primates",
|
418 |
+
"Hominidae",
|
419 |
+
"Gorilla",
|
420 |
+
"gorilla",
|
421 |
+
)
|
422 |
+
)
|
423 |
+
expected = set()
|
424 |
+
assert actual == expected
|
425 |
+
|
426 |
+
|
427 |
+
def test_taxonomictree_descendants_last():
|
428 |
+
lookup = lib.TaxonomicTree()
|
429 |
+
|
430 |
+
lookup.add(("A", "B", "C", "D", "E", "F", "G"))
|
431 |
+
|
432 |
+
actual = list(lookup.descendants(("A", "B", "C", "D", "E", "F", "G")))
|
433 |
+
|
434 |
+
expected = [
|
435 |
+
(("A", "B", "C", "D", "E", "F", "G"), 6),
|
436 |
+
]
|
437 |
+
assert actual == expected
|
438 |
+
|
439 |
+
|
440 |
+
def test_taxonomictree_descendants_entire_tree():
|
441 |
+
lookup = lib.TaxonomicTree()
|
442 |
+
|
443 |
+
lookup.add(("A", "B"))
|
444 |
+
|
445 |
+
actual = list(lookup.descendants())
|
446 |
+
|
447 |
+
expected = [
|
448 |
+
(("A",), 0),
|
449 |
+
(("A", "B"), 1),
|
450 |
+
]
|
451 |
+
assert actual == expected
|
452 |
+
|
453 |
+
|
454 |
+
def test_taxonomictree_descendants_entire_tree_with_prefix():
|
455 |
+
lookup = lib.TaxonomicTree()
|
456 |
+
|
457 |
+
lookup.add(("A", "B"))
|
458 |
+
|
459 |
+
actual = list(lookup.descendants(prefix=("A",)))
|
460 |
+
|
461 |
+
expected = [
|
462 |
+
(("A",), 0),
|
463 |
+
(("A", "B"), 1),
|
464 |
+
]
|
465 |
+
assert actual == expected
|
466 |
+
|
467 |
+
|
468 |
+
def test_taxonomictree_descendants_general():
|
469 |
+
lookup = lib.TaxonomicTree()
|
470 |
+
|
471 |
+
lookup.add(("A", "B", "C", "D", "E", "F", "G"))
|
472 |
+
|
473 |
+
actual = list(lookup.descendants(("A", "B", "C", "D")))
|
474 |
+
|
475 |
+
expected = [
|
476 |
+
(("A", "B", "C", "D"), 3),
|
477 |
+
(("A", "B", "C", "D", "E"), 4),
|
478 |
+
(("A", "B", "C", "D", "E", "F"), 5),
|
479 |
+
(("A", "B", "C", "D", "E", "F", "G"), 6),
|
480 |
+
]
|
481 |
+
assert actual == expected
|
txt_emb.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4a3c3412c3dae49cf92cc760aba5ee84227362adf1eb08f04dd50ee2a756e43
|
3 |
+
size 969818240
|
txt_emb_species.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:844e6fabc06cac072214d566b78f40825b154efa9479eb11285030ca038b2ece
|
3 |
+
size 65731052
|
txt_emb_species.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91ce02dff2433222e3138b8bf7eefa1dd74b30f4d406c16cd3301f66d65ab4ed
|
3 |
+
size 787435648
|