|
import torch
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
attn_maps = {}
|
|
def hook_fn(name):
|
|
def forward_hook(module, input, output):
|
|
if hasattr(module.processor, "attn_map"):
|
|
attn_maps[name] = module.processor.attn_map
|
|
del module.processor.attn_map
|
|
|
|
return forward_hook
|
|
|
|
def register_cross_attention_hook(unet):
|
|
for name, module in unet.named_modules():
|
|
if name.split('.')[-1].startswith('attn2'):
|
|
module.register_forward_hook(hook_fn(name))
|
|
|
|
return unet
|
|
|
|
def upscale(attn_map, target_size):
|
|
attn_map = torch.mean(attn_map, dim=0)
|
|
attn_map = attn_map.permute(1,0)
|
|
temp_size = None
|
|
|
|
for i in range(0,5):
|
|
scale = 2 ** i
|
|
if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
|
|
temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
|
|
break
|
|
|
|
assert temp_size is not None, "temp_size cannot is None"
|
|
|
|
attn_map = attn_map.view(attn_map.shape[0], *temp_size)
|
|
|
|
attn_map = F.interpolate(
|
|
attn_map.unsqueeze(0).to(dtype=torch.float32),
|
|
size=target_size,
|
|
mode='bilinear',
|
|
align_corners=False
|
|
)[0]
|
|
|
|
attn_map = torch.softmax(attn_map, dim=0)
|
|
return attn_map
|
|
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
|
|
|
idx = 0 if instance_or_negative else 1
|
|
net_attn_maps = []
|
|
|
|
for name, attn_map in attn_maps.items():
|
|
attn_map = attn_map.cpu() if detach else attn_map
|
|
attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
|
|
attn_map = upscale(attn_map, image_size)
|
|
net_attn_maps.append(attn_map)
|
|
|
|
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
|
|
|
return net_attn_maps
|
|
|
|
def attnmaps2images(net_attn_maps):
|
|
|
|
|
|
images = []
|
|
|
|
for attn_map in net_attn_maps:
|
|
attn_map = attn_map.cpu().numpy()
|
|
|
|
|
|
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
|
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
|
|
|
image = Image.fromarray(normalized_attn_map)
|
|
|
|
|
|
images.append(image)
|
|
|
|
|
|
return images
|
|
def is_torch2_available():
|
|
return hasattr(F, "scaled_dot_product_attention")
|
|
|
|
def get_generator(seed, device):
|
|
|
|
if seed is not None:
|
|
if isinstance(seed, list):
|
|
generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
|
|
else:
|
|
generator = torch.Generator(device).manual_seed(seed)
|
|
else:
|
|
generator = None
|
|
|
|
return generator |