Spaces:
Running
on
Zero
Running
on
Zero
TheStinger
commited on
Commit
β’
68173e6
1
Parent(s):
7822118
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import requests
|
3 |
import random
|
4 |
import os
|
5 |
-
import zipfile
|
6 |
import librosa
|
7 |
import time
|
8 |
from infer_rvc_python import BaseLoader
|
@@ -11,7 +11,8 @@ from tts_voice import tts_order_voice
|
|
11 |
import edge_tts
|
12 |
import tempfile
|
13 |
import anyio
|
14 |
-
|
|
|
15 |
|
16 |
language_dict = tts_order_voice
|
17 |
|
@@ -25,6 +26,7 @@ async def text_to_speech_edge(text, language_code):
|
|
25 |
|
26 |
return tmp_path
|
27 |
|
|
|
28 |
try:
|
29 |
import spaces
|
30 |
spaces_status = True
|
@@ -32,7 +34,7 @@ except ImportError:
|
|
32 |
spaces_status = False
|
33 |
|
34 |
separator = Separator()
|
35 |
-
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
|
36 |
|
37 |
global pth_file
|
38 |
global index_file
|
@@ -50,55 +52,79 @@ PITCH_ALGO_OPT = [
|
|
50 |
"rmvpe",
|
51 |
"rmvpe+",
|
52 |
]
|
53 |
-
UVR_5_MODELS = [
|
54 |
-
{"model_name": "BS-Roformer-Viperx-1297", "checkpoint": "model_bs_roformer_ep_317_sdr_12.9755.ckpt"},
|
55 |
-
{"model_name": "MDX23C-InstVoc HQ 2", "checkpoint": "MDX23C-8KFFT-InstVoc_HQ_2.ckpt"},
|
56 |
-
{"model_name": "Kim Vocal 2", "checkpoint": "Kim_Vocal_2.onnx"},
|
57 |
-
{"model_name": "5_HP-Karaoke", "checkpoint": "5_HP-Karaoke-UVR.pth"},
|
58 |
-
{"model_name": "UVR-DeNoise by FoxJoy", "checkpoint": "UVR-DeNoise.pth"},
|
59 |
-
{"model_name": "UVR-DeEcho-DeReverb by FoxJoy", "checkpoint": "UVR-DeEcho-DeReverb.pth"},
|
60 |
-
]
|
61 |
|
62 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
63 |
|
64 |
def unzip_file(file):
|
65 |
-
filename = os.path.basename(file).split(".")[0]
|
66 |
with zipfile.ZipFile(file, 'r') as zip_ref:
|
67 |
-
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
|
68 |
return True
|
69 |
-
|
70 |
|
71 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
|
73 |
|
74 |
def download_from_url(url, filename=None):
|
75 |
if "/blob/" in url:
|
76 |
-
url = url.replace("/blob/", "/resolve/")
|
77 |
if "huggingface" not in url:
|
78 |
return ["The URL must be from huggingface", "Failed", "Failed"]
|
79 |
if filename is None:
|
80 |
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
|
81 |
response = requests.get(url)
|
82 |
-
total = int(response.headers.get('content-length', 0))
|
83 |
if total > 500000000:
|
84 |
|
85 |
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
|
86 |
current = 0
|
87 |
with open(filename, "wb") as f:
|
88 |
-
for data in response.iter_content(chunk_size=4096):
|
89 |
f.write(data)
|
90 |
current += len(data)
|
91 |
print(progress_bar(total, current), end="\r")
|
92 |
|
93 |
|
|
|
94 |
try:
|
95 |
unzip_file(filename)
|
96 |
except Exception as e:
|
97 |
-
return ["Failed to unzip the file", "Failed", "Failed"]
|
98 |
-
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
|
99 |
pth_files = []
|
100 |
index_files = []
|
101 |
-
for root, dirs, files in os.walk(unzipped_dir):
|
102 |
for file in files:
|
103 |
if file.endswith(".pth"):
|
104 |
pth_files.append(os.path.join(root, file))
|
@@ -158,7 +184,7 @@ def calculate_remaining_time(epochs, seconds_per_epoch):
|
|
158 |
else:
|
159 |
return f"{int(hours)} hours and {int(minutes)} minutes"
|
160 |
|
161 |
-
def inf_handler(audio, model_name):
|
162 |
model_found = False
|
163 |
for model_info in UVR_5_MODELS:
|
164 |
if model_info["model_name"] == model_name:
|
|
|
2 |
import requests
|
3 |
import random
|
4 |
import os
|
5 |
+
import zipfile
|
6 |
import librosa
|
7 |
import time
|
8 |
from infer_rvc_python import BaseLoader
|
|
|
11 |
import edge_tts
|
12 |
import tempfile
|
13 |
import anyio
|
14 |
+
import asyncio
|
15 |
+
from audio_separator.separator import Separator
|
16 |
|
17 |
language_dict = tts_order_voice
|
18 |
|
|
|
26 |
|
27 |
return tmp_path
|
28 |
|
29 |
+
# fucking dogshit toggle
|
30 |
try:
|
31 |
import spaces
|
32 |
spaces_status = True
|
|
|
34 |
spaces_status = False
|
35 |
|
36 |
separator = Separator()
|
37 |
+
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
|
38 |
|
39 |
global pth_file
|
40 |
global index_file
|
|
|
52 |
"rmvpe",
|
53 |
"rmvpe+",
|
54 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
57 |
|
58 |
def unzip_file(file):
|
59 |
+
filename = os.path.basename(file).split(".")[0]
|
60 |
with zipfile.ZipFile(file, 'r') as zip_ref:
|
61 |
+
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
|
62 |
return True
|
|
|
63 |
|
64 |
+
def get_training_info(audio_file):
|
65 |
+
if audio_file is None:
|
66 |
+
return 'Please provide an audio file!'
|
67 |
+
duration = get_audio_duration(audio_file)
|
68 |
+
sample_rate = wave.open(audio_file, 'rb').getframerate()
|
69 |
+
|
70 |
+
training_info = {
|
71 |
+
(0, 2): (150, 'OV2'),
|
72 |
+
(2, 3): (200, 'OV2'),
|
73 |
+
(3, 5): (250, 'OV2'),
|
74 |
+
(5, 10): (300, 'Normal'),
|
75 |
+
(10, 25): (500, 'Normal'),
|
76 |
+
(25, 45): (700, 'Normal'),
|
77 |
+
(45, 60): (1000, 'Normal')
|
78 |
+
}
|
79 |
+
|
80 |
+
for (min_duration, max_duration), (epochs, pretrain) in training_info.items():
|
81 |
+
if min_duration <= duration < max_duration:
|
82 |
+
break
|
83 |
+
else:
|
84 |
+
return 'Duration is not within the specified range!'
|
85 |
+
|
86 |
+
return f'You should use the **{pretrain}** pretrain with **{epochs}** epochs at **{sample_rate/1000}khz** sample rate.'
|
87 |
+
|
88 |
+
def on_button_click(audio_file_path):
|
89 |
+
return get_training_info(audio_file_path)
|
90 |
+
|
91 |
+
def get_audio_duration(audio_file_path):
|
92 |
+
audio_info = sf.info(audio_file_path)
|
93 |
+
duration_minutes = audio_info.duration / 60
|
94 |
+
return duration_minutes
|
95 |
+
|
96 |
+
def progress_bar(total, current): # best progress bar ever trust me sunglasses emoji π
|
97 |
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
|
98 |
|
99 |
def download_from_url(url, filename=None):
|
100 |
if "/blob/" in url:
|
101 |
+
url = url.replace("/blob/", "/resolve/") # made it delik proof π
|
102 |
if "huggingface" not in url:
|
103 |
return ["The URL must be from huggingface", "Failed", "Failed"]
|
104 |
if filename is None:
|
105 |
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
|
106 |
response = requests.get(url)
|
107 |
+
total = int(response.headers.get('content-length', 0)) # bytes to download (length of the file)
|
108 |
if total > 500000000:
|
109 |
|
110 |
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
|
111 |
current = 0
|
112 |
with open(filename, "wb") as f:
|
113 |
+
for data in response.iter_content(chunk_size=4096):
|
114 |
f.write(data)
|
115 |
current += len(data)
|
116 |
print(progress_bar(total, current), end="\r")
|
117 |
|
118 |
|
119 |
+
|
120 |
try:
|
121 |
unzip_file(filename)
|
122 |
except Exception as e:
|
123 |
+
return ["Failed to unzip the file", "Failed", "Failed"]
|
124 |
+
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
|
125 |
pth_files = []
|
126 |
index_files = []
|
127 |
+
for root, dirs, files in os.walk(unzipped_dir):
|
128 |
for file in files:
|
129 |
if file.endswith(".pth"):
|
130 |
pth_files.append(os.path.join(root, file))
|
|
|
184 |
else:
|
185 |
return f"{int(hours)} hours and {int(minutes)} minutes"
|
186 |
|
187 |
+
def inf_handler(audio, model_name):
|
188 |
model_found = False
|
189 |
for model_info in UVR_5_MODELS:
|
190 |
if model_info["model_name"] == model_name:
|