|
from transformers import pipeline, Conversation |
|
import gradio as gr |
|
import time |
|
|
|
chatbot = pipeline("text-generation", model="epfl-llm/meditron-7b", use_auth_token=True) |
|
|
|
|
|
message_list = [] |
|
response_list = [] |
|
|
|
print("START") |
|
def vanilla_chatbot(message, history): |
|
start = time.perf_counter() |
|
print("start chat") |
|
conversation = Conversation(text=message, past_user_inputs=message_list, generated_responses=response_list) |
|
conversation = chatbot(conversation) |
|
to_return = conversation.generated_responses[-1] |
|
|
|
print ("Answer in %5.1f secs " % (time.perf_counter() - start)) |
|
return to_return |
|
|
|
def chat_bot(message, history): |
|
start = time.perf_counter() |
|
print("start chat") |
|
to_return = chatbot(message, max_length=500)[0]['generated_text'] |
|
|
|
print ("Answer in %5.1f secs " % (time.perf_counter() - start)) |
|
return to_return |
|
|
|
demo_chatbot = gr.ChatInterface(chat_bot, title="Check medical chatbot", description="Enter question") |
|
|
|
demo_chatbot.launch() |