Spaces:
Running
Running
""" | |
Gradio requires input to be fed in a very peculiar way and does not provide too much flexibility - don't expect from this demo too much. The backbone had to be adjusted to work on hugging face spaces. Go see https://github.com/PiotrAntoniak/QuestionAnswering for a prettier version utilizing streamlit. | |
""" | |
import gradio as gr | |
description = """Do you have a long document and a bunch of questions that can be answered given the data in this file? | |
Fear not for this demo is for you. | |
Upload your pdf, ask your questions and wait for the magic to happen. | |
DISCLAIMER: I do no have idea what happens to the pdfs that you upload and who has access to them so make sure there is nothing confidential there. | |
""" | |
title = "QA answering from a pdf." | |
from datetime import datetime | |
import numpy as np | |
import time | |
import hashlib | |
import torch | |
from transformers import AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, pipeline | |
from tqdm import tqdm | |
import os | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
import textract | |
from scipy.special import softmax | |
import pandas as pd | |
from datetime import datetime | |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1") | |
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1").to(device).eval() | |
tokenizer_ans = AutoTokenizer.from_pretrained("deepset/roberta-large-squad2") | |
model_ans = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-large-squad2").to(device).eval() | |
if device == 'cuda:0': | |
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans,device = 0) | |
else: | |
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans) | |
def cls_pooling(model_output): | |
return model_output.last_hidden_state[:,0] | |
def encode_query(query): | |
encoded_input = tokenizer(query, truncation=True, return_tensors='pt').to(device) | |
with torch.no_grad(): | |
model_output = model(**encoded_input, return_dict=True) | |
embeddings = cls_pooling(model_output) | |
return embeddings.cpu() | |
def encode_docs(docs,maxlen = 64, stride = 32): | |
encoded_input = [] | |
embeddings = [] | |
spans = [] | |
file_names = [] | |
name, text = docs | |
text = text.split(" ") | |
if len(text) < maxlen: | |
text = " ".join(text) | |
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device)) | |
spans.append(temp_text) | |
file_names.append(name) | |
else: | |
num_iters = int(len(text)/maxlen)+1 | |
for i in range(num_iters): | |
if i == 0: | |
temp_text = " ".join(text[i*maxlen:(i+1)*maxlen+stride]) | |
else: | |
temp_text = " ".join(text[(i-1)*maxlen:(i)*maxlen][-stride:] + text[i*maxlen:(i+1)*maxlen]) | |
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device)) | |
spans.append(temp_text) | |
file_names.append(name) | |
with torch.no_grad(): | |
for encoded in tqdm(encoded_input): | |
model_output = model(**encoded, return_dict=True) | |
embeddings.append(cls_pooling(model_output)) | |
embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu()) | |
np.save("emb_{}.npy".format(name),dict(zip(list(range(len(embeddings))),embeddings))) | |
np.save("spans_{}.npy".format(name),dict(zip(list(range(len(spans))),spans))) | |
np.save("file_{}.npy".format(name),dict(zip(list(range(len(file_names))),file_names))) | |
return embeddings, spans, file_names | |
def predict(query,data): | |
name_to_save = data.name.split("/")[-1].split(".")[0][:-8] | |
k=20 | |
st = str([query,name_to_save]) | |
st_hashed = str(hashlib.sha256(st.encode()).hexdigest()) #just to speed up examples load | |
hist = st + " " + st_hashed | |
now = datetime.now() | |
current_time = now.strftime("%H:%M:%S") | |
try: #if the same question was already asked for this document, upload question and answer | |
df = pd.read_csv("{}.csv".format(hash(st))) | |
list_outputs = [] | |
for i in range(k): | |
temp = [df.iloc[n] for n in range(k)][i] | |
text = '' | |
text += 'PROBABILITIES: '+ temp.Probabilities + '\n\n' | |
text += 'ANSWER: ' +temp.Answer + '\n\n' | |
text += 'PASSAGE: '+temp.Passage + '\n\n' | |
list_outputs.append(text) | |
return list_outputs | |
except Exception as e: | |
print(e) | |
print(st) | |
if name_to_save+".txt" in os.listdir(): #if the document was already used, load its embeddings | |
doc_emb = np.load('emb_{}.npy'.format(name_to_save),allow_pickle='TRUE').item() | |
doc_text = np.load('spans_{}.npy'.format(name_to_save),allow_pickle='TRUE').item() | |
file_names_dicto = np.load('file_{}.npy'.format(name_to_save),allow_pickle='TRUE').item() | |
doc_emb = np.array(list(doc_emb.values())).reshape(-1,768) | |
doc_text = list(doc_text.values()) | |
file_names = list(file_names_dicto.values()) | |
else: | |
text = textract.process("{}".format(data.name)).decode('utf8') | |
text = text.replace("\r", " ") | |
text = text.replace("\n", " ") | |
text = text.replace(" . "," ") | |
doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32) | |
doc_emb = doc_emb.reshape(-1, 768) | |
with open("{}.txt".format(name_to_save),"w",encoding="utf-8") as f: | |
f.write(text) | |
#once embeddings are calculated, run MIPS | |
start = time.time() | |
query_emb = encode_query(query) | |
scores = np.matmul(query_emb, doc_emb.transpose(1,0))[0].tolist() | |
doc_score_pairs = list(zip(doc_text, scores, file_names)) | |
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) | |
probs_sum = 0 | |
probs = softmax(sorted(scores,reverse = True)[:k]) | |
table = {"Passage":[],"Answer":[],"Probabilities":[]} | |
#get answers for each pair of question (from user) and top best passages | |
for i, (passage, _, names) in enumerate(doc_score_pairs[:k]): | |
passage = passage.replace("\n","") | |
#passage = passage.replace(" . "," ") | |
if probs[i] > 0.1 or (i < 3 and probs[i] > 0.05): #generate answers for more likely passages but no less than 2 | |
QA = {'question':query,'context':passage} | |
ans = pipe(QA) | |
probabilities = "P(a|p): {}, P(a|p,q): {}, P(p|q): {}".format(round(ans["score"],5), | |
round(ans["score"]*probs[i],5), | |
round(probs[i],5)) | |
table["Passage"].append(passage) | |
table["Answer"].append(str(ans["answer"]).upper()) | |
table["Probabilities"].append(probabilities) | |
else: | |
table["Passage"].append(passage) | |
table["Answer"].append("no_answer_calculated") | |
table["Probabilities"].append("P(p|q): {}".format(round(probs[i],5))) | |
#format answers for ~nice output and save it for future (if the same question is asked again using same pdf) | |
df = pd.DataFrame(table) | |
print(df) | |
print("time: "+ str(time.time()-start)) | |
print(datetime.today().strftime('%Y-%m-%d %H:%M:%S')) | |
with open("HISTORY.txt","a", encoding = "utf-8") as f: | |
f.write(hist) | |
f.write(" " + str(current_time)) | |
f.write("\n") | |
f.close() | |
df.to_csv("{}.csv".format(hash(st)), index=False) | |
list_outputs = [] | |
for i in range(k): | |
text = '' | |
temp = [df.iloc[n] for n in range(k)][i] | |
text += 'PROBABILITIES: '+ temp.Probabilities + '\n\n' | |
text += 'ANSWER: ' +temp.Answer + '\n\n' | |
text += 'PASSAGE: '+temp.Passage + '\n\n' | |
list_outputs.append(text) | |
return list_outputs | |
iface = gr.Interface(examples = [ | |
["How high is the highest mountain?","China.pdf"], | |
["Where does UK prime minister live?","London.pdf"] | |
], | |
fn =predict, | |
inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"), | |
gr.inputs.File(), | |
], | |
outputs = 'text', | |
description=description, | |
title = title, | |
allow_flagging ="manual",flagging_options = ["correct","wrong"], | |
allow_screenshot=False) | |
iface.launch(enable_queue=True, show_error =True) |