Spaces:
Runtime error
Runtime error
| import math | |
| import pdb | |
| import random | |
| from dataclasses import dataclass | |
| from typing import Callable, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.attention import FeedForward | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from einops import rearrange, repeat | |
| from torch import nn | |
| from animatediff.utils.util import zero_rank_print | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def zero_module(module): | |
| # Zero out the parameters of a module and return it. | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| class TemporalTransformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| def get_motion_module( | |
| in_channels, | |
| motion_module_type: str, | |
| motion_module_kwargs: dict | |
| ): | |
| if motion_module_type == "Vanilla": | |
| return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs) | |
| elif motion_module_type == "Conv": | |
| return ConvTemporalModule(in_channels=in_channels, **motion_module_kwargs) | |
| else: | |
| raise ValueError | |
| class VanillaTemporalModule(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| num_attention_heads = 8, | |
| num_transformer_block = 2, | |
| attention_block_types =( "Temporal_Self", ), | |
| spatial_position_encoding = False, | |
| temporal_position_encoding = True, | |
| temporal_position_encoding_max_len = 32, | |
| temporal_attention_dim_div = 1, | |
| zero_initialize = True, | |
| causal_temporal_attention = False, | |
| causal_temporal_attention_mask_type = "", | |
| ): | |
| super().__init__() | |
| self.temporal_transformer = TemporalTransformer3DModel( | |
| in_channels=in_channels, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, | |
| num_layers=num_transformer_block, | |
| attention_block_types=attention_block_types, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| spatial_position_encoding = spatial_position_encoding, | |
| causal_temporal_attention=causal_temporal_attention, | |
| causal_temporal_attention_mask_type=causal_temporal_attention_mask_type, | |
| ) | |
| if zero_initialize: | |
| self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) | |
| def forward(self, input_tensor, temb=None, encoder_hidden_states=None, attention_mask=None): | |
| hidden_states = input_tensor | |
| hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) | |
| output = hidden_states | |
| return output | |
| class TemporalTransformer3DModel(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| num_attention_heads, | |
| attention_head_dim, | |
| num_layers, | |
| attention_block_types = ( "Temporal_Self", "Temporal_Self", ), | |
| dropout = 0.0, | |
| norm_num_groups = 32, | |
| cross_attention_dim = 768, | |
| activation_fn = "geglu", | |
| attention_bias = False, | |
| upcast_attention = False, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 32, | |
| spatial_position_encoding = False, | |
| causal_temporal_attention = None, | |
| causal_temporal_attention_mask_type = "", | |
| ): | |
| super().__init__() | |
| assert causal_temporal_attention is not None | |
| self.causal_temporal_attention = causal_temporal_attention | |
| assert (not causal_temporal_attention) or (causal_temporal_attention_mask_type != "") | |
| self.causal_temporal_attention_mask_type = causal_temporal_attention_mask_type | |
| self.causal_temporal_attention_mask = None | |
| self.spatial_position_encoding = spatial_position_encoding | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| if spatial_position_encoding: | |
| self.pos_encoder_2d = PositionalEncoding2D(inner_dim) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| dim=inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| attention_block_types=attention_block_types, | |
| dropout=dropout, | |
| norm_num_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| attention_bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| self.proj_out = nn.Linear(inner_dim, in_channels) | |
| def get_causal_temporal_attention_mask(self, hidden_states): | |
| batch_size, sequence_length, dim = hidden_states.shape | |
| if self.causal_temporal_attention_mask is None or self.causal_temporal_attention_mask.shape != (batch_size, sequence_length, sequence_length): | |
| zero_rank_print(f"build attn mask of type {self.causal_temporal_attention_mask_type}") | |
| if self.causal_temporal_attention_mask_type == "causal": | |
| # 1. vanilla causal mask | |
| mask = torch.tril(torch.ones(sequence_length, sequence_length)) | |
| elif self.causal_temporal_attention_mask_type == "2-seq": | |
| # 2. 2-seq | |
| mask = torch.zeros(sequence_length, sequence_length) | |
| mask[:sequence_length // 2, :sequence_length // 2] = 1 | |
| mask[-sequence_length // 2:, -sequence_length // 2:] = 1 | |
| elif self.causal_temporal_attention_mask_type == "0-prev": | |
| # attn to the previous frame | |
| indices = torch.arange(sequence_length) | |
| indices_prev = indices - 1 | |
| indices_prev[0] = 0 | |
| mask = torch.zeros(sequence_length, sequence_length) | |
| mask[:, 0] = 1. | |
| mask[indices, indices_prev] = 1. | |
| elif self.causal_temporal_attention_mask_type == "0": | |
| # only attn to first frame | |
| mask = torch.zeros(sequence_length, sequence_length) | |
| mask[:,0] = 1 | |
| elif self.causal_temporal_attention_mask_type == "wo-self": | |
| indices = torch.arange(sequence_length) | |
| mask = torch.ones(sequence_length, sequence_length) | |
| mask[indices, indices] = 0 | |
| elif self.causal_temporal_attention_mask_type == "circle": | |
| indices = torch.arange(sequence_length) | |
| indices_prev = indices - 1 | |
| indices_prev[0] = 0 | |
| mask = torch.eye(sequence_length) | |
| mask[indices, indices_prev] = 1 | |
| mask[0,-1] = 1 | |
| else: raise ValueError | |
| # for sanity check | |
| if dim == 320: zero_rank_print(mask) | |
| # generate attention mask fron binary values | |
| mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
| mask = mask.unsqueeze(0) | |
| mask = mask.repeat(batch_size, 1, 1) | |
| self.causal_temporal_attention_mask = mask.to(hidden_states.device) | |
| return self.causal_temporal_attention_mask | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| residual = hidden_states | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| height, width = hidden_states.shape[-2:] | |
| hidden_states = self.norm(hidden_states) | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b h w) f c") | |
| hidden_states = self.proj_in(hidden_states) | |
| if self.spatial_position_encoding: | |
| video_length = hidden_states.shape[1] | |
| hidden_states = rearrange(hidden_states, "(b h w) f c -> (b f) h w c", h=height, w=width) | |
| pos_encoding = self.pos_encoder_2d(hidden_states) | |
| pos_encoding = rearrange(pos_encoding, "(b f) h w c -> (b h w) f c", f = video_length) | |
| hidden_states = rearrange(hidden_states, "(b f) h w c -> (b h w) f c", f=video_length) | |
| attention_mask = self.get_causal_temporal_attention_mask(hidden_states) if self.causal_temporal_attention else attention_mask | |
| # Transformer Blocks | |
| for block in self.transformer_blocks: | |
| if not self.spatial_position_encoding : | |
| pos_encoding = None | |
| hidden_states = block(hidden_states, pos_encoding=pos_encoding, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask) | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = rearrange(hidden_states, "(b h w) f c -> b c f h w", h=height, w=width) | |
| output = hidden_states + residual | |
| # output = hidden_states | |
| return output | |
| class TemporalTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| attention_block_types = ( "Temporal_Self", "Temporal_Self", ), | |
| dropout = 0.0, | |
| norm_num_groups = 32, | |
| cross_attention_dim = 768, | |
| activation_fn = "geglu", | |
| attention_bias = False, | |
| upcast_attention = False, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 32, | |
| ): | |
| super().__init__() | |
| attention_blocks = [] | |
| norms = [] | |
| for block_name in attention_block_types: | |
| attention_blocks.append( | |
| TemporalSelfAttention( | |
| attention_mode=block_name.split("_")[0], | |
| cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| ) | |
| ) | |
| norms.append(nn.LayerNorm(dim)) | |
| self.attention_blocks = nn.ModuleList(attention_blocks) | |
| self.norms = nn.ModuleList(norms) | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
| self.ff_norm = nn.LayerNorm(dim) | |
| def forward(self, hidden_states, pos_encoding=None, encoder_hidden_states=None, attention_mask=None): | |
| for attention_block, norm in zip(self.attention_blocks, self.norms): | |
| if pos_encoding is not None: | |
| hidden_states += pos_encoding | |
| norm_hidden_states = norm(hidden_states) | |
| hidden_states = attention_block( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| ) + hidden_states | |
| hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
| output = hidden_states | |
| return output | |
| def get_emb(sin_inp): | |
| """ | |
| Gets a base embedding for one dimension with sin and cos intertwined | |
| """ | |
| emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1) | |
| return torch.flatten(emb, -2, -1) | |
| class PositionalEncoding2D(nn.Module): | |
| def __init__(self, channels): | |
| """ | |
| :param channels: The last dimension of the tensor you want to apply pos emb to. | |
| """ | |
| super(PositionalEncoding2D, self).__init__() | |
| self.org_channels = channels | |
| channels = int(np.ceil(channels / 4) * 2) | |
| self.channels = channels | |
| inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels)) | |
| self.register_buffer("inv_freq", inv_freq) | |
| self.register_buffer("cached_penc", None) | |
| def forward(self, tensor): | |
| """ | |
| :param tensor: A 4d tensor of size (batch_size, x, y, ch) | |
| :return: Positional Encoding Matrix of size (batch_size, x, y, ch) | |
| """ | |
| if len(tensor.shape) != 4: | |
| raise RuntimeError("The input tensor has to be 4d!") | |
| if self.cached_penc is not None and self.cached_penc.shape == tensor.shape: | |
| return self.cached_penc | |
| self.cached_penc = None | |
| batch_size, x, y, orig_ch = tensor.shape | |
| pos_x = torch.arange(x, device=tensor.device).type(self.inv_freq.type()) | |
| pos_y = torch.arange(y, device=tensor.device).type(self.inv_freq.type()) | |
| sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq) | |
| sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq) | |
| emb_x = get_emb(sin_inp_x).unsqueeze(1) | |
| emb_y = get_emb(sin_inp_y) | |
| emb = torch.zeros((x, y, self.channels * 2), device=tensor.device).type( | |
| tensor.type() | |
| ) | |
| emb[:, :, : self.channels] = emb_x | |
| emb[:, :, self.channels : 2 * self.channels] = emb_y | |
| self.cached_penc = emb[None, :, :, :orig_ch].repeat(tensor.shape[0], 1, 1, 1) | |
| return self.cached_penc | |
| class PositionalEncoding(nn.Module): | |
| def __init__( | |
| self, | |
| d_model, | |
| dropout = 0., | |
| max_len = 32, | |
| ): | |
| super().__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| position = torch.arange(max_len).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
| pe = torch.zeros(1, max_len, d_model) | |
| pe[0, :, 0::2] = torch.sin(position * div_term) | |
| pe[0, :, 1::2] = torch.cos(position * div_term) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| # if x.size(1) < 16: | |
| # start_idx = random.randint(0, 12) | |
| # else: | |
| # start_idx = 0 | |
| x = x + self.pe[:, :x.size(1)] | |
| return self.dropout(x) | |
| class TemporalSelfAttention(Attention): | |
| def __init__( | |
| self, | |
| attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 32, | |
| *args, **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| assert attention_mode == "Temporal" | |
| self.pos_encoder = PositionalEncoding( | |
| kwargs["query_dim"], | |
| max_len=temporal_position_encoding_max_len | |
| ) if temporal_position_encoding else None | |
| def set_use_memory_efficient_attention_xformers( | |
| self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None | |
| ): | |
| # disable motion module efficient xformers to avoid bad results, don't know why | |
| # TODO: fix this bug | |
| pass | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs): | |
| # The `Attention` class can call different attention processors / attention functions | |
| # here we simply pass along all tensors to the selected processor class | |
| # For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
| # add position encoding | |
| hidden_states = self.pos_encoder(hidden_states) | |
| if hasattr(self.processor, "__call__"): | |
| return self.processor.__call__( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| else: | |
| return self.processor( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |