Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn.utils import spectral_norm | |
from torch.nn.utils.parametrizations import weight_norm | |
from TTS.utils.audio.torch_transforms import TorchSTFT | |
from TTS.vocoder.models.hifigan_discriminator import MultiPeriodDiscriminator | |
LRELU_SLOPE = 0.1 | |
class SpecDiscriminator(nn.Module): | |
"""docstring for Discriminator.""" | |
def __init__(self, fft_size=1024, hop_length=120, win_length=600, use_spectral_norm=False): | |
super().__init__() | |
norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
self.fft_size = fft_size | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.stft = TorchSTFT(fft_size, hop_length, win_length) | |
self.discriminators = nn.ModuleList( | |
[ | |
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))), | |
] | |
) | |
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) | |
def forward(self, y): | |
fmap = [] | |
with torch.no_grad(): | |
y = y.squeeze(1) | |
y = self.stft(y) | |
y = y.unsqueeze(1) | |
for _, d in enumerate(self.discriminators): | |
y = d(y) | |
y = F.leaky_relu(y, LRELU_SLOPE) | |
fmap.append(y) | |
y = self.out(y) | |
fmap.append(y) | |
return torch.flatten(y, 1, -1), fmap | |
class MultiResSpecDiscriminator(torch.nn.Module): | |
def __init__( # pylint: disable=dangerous-default-value | |
self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann_window" | |
): | |
super().__init__() | |
self.discriminators = nn.ModuleList( | |
[ | |
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), | |
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), | |
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window), | |
] | |
) | |
def forward(self, x): | |
scores = [] | |
feats = [] | |
for d in self.discriminators: | |
score, feat = d(x) | |
scores.append(score) | |
feats.append(feat) | |
return scores, feats | |
class UnivnetDiscriminator(nn.Module): | |
"""Univnet discriminator wrapping MPD and MSD.""" | |
def __init__(self): | |
super().__init__() | |
self.mpd = MultiPeriodDiscriminator() | |
self.msd = MultiResSpecDiscriminator() | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): input waveform. | |
Returns: | |
List[Tensor]: discriminator scores. | |
List[List[Tensor]]: list of list of features from each layers of each discriminator. | |
""" | |
scores, feats = self.mpd(x) | |
scores_, feats_ = self.msd(x) | |
return scores + scores_, feats + feats_ | |