TheJimmy's picture
app file
aad580c verified
raw
history blame
2.34 kB
import streamlit as st
from FlagEmbedding import BGEM3FlagModel
from FlagEmbedding import FlagReranker
import pandas as pd
import numpy as np
@st.cache_resource
def load_model():
return BGEM3FlagModel('BAAI/bge-m3',
use_fp16=True)
@st.cache_resource
def load_reranker():
return FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True)
@st.cache_data
def load_embed(path):
embeddings_2 = np.load(path)
return embeddings_2
model = load_model()
reranker = load_reranker()
embeddings_2 = load_embed('D:/AI_Builder/BGE_embeddings_2.npy')
data = pd.DataFrame(pd.read_csv('D:/AI_Builder/ActualProject/DataCollection/TESTUNCLEANbookquestions.csv'))
data2 = pd.DataFrame(pd.read_csv('D:/AI_Builder/ActualProject/DataCollection/TRAINbookquestions.csv'))
data3 = pd.read_csv("D:/AI_Builder/ActualProject/DataCollection/booksummaries.txt",
header=None,sep="\t",
names=["ID", "Freebase ID", "Book Name", "Book Author", "Pub date", "Genres", "Summary"])
df = pd.concat([data, data2])
df = df.merge(data3, on='ID', how='left')
df = df.rename(columns={'Book Name_x': 'Book Name'})
df = df[['ID', 'Book Name', 'Book Author', 'Questions', 'Summary']]
st.header(":books: Book Identifier")
k = 10
with st.form(key='my_form'):
sen1 = st.text_area("Book description:")
submit_button = st.form_submit_button(label='Submit')
if submit_button:
embeddings_1 = model.encode(sen1,
batch_size=12,
max_length=8192,
)['dense_vecs']
similarity = embeddings_1 @ embeddings_2.T
top_k_qs = []
topk = np.argsort(similarity)[-k:]
for t in topk:
pred_sum = df['Summary'].iloc[t]
pred_ques = sen1
pred = [pred_ques, pred_sum]
top_k_qs.append(pred)
rrscore = reranker.compute_score(top_k_qs, normalize=True)
rrscore_index = np.argsort(rrscore)
pred_book = []
for rr in rrscore_index:
pred_book.append(f"{df['Book Name'][topk[rr]]} by {df['Book Author'][topk[rr]]}")
finalpred = []
pred_book.reverse()
st.write("Here is your prediction")
for n, pred in enumerate(pred_book):
st.write(f"{n+1}: {pred}")