Spaces:
Sleeping
Sleeping
import time | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer, TextStreamer | |
# import spaces | |
import argparse | |
from llava_llama3.model.builder import load_pretrained_model | |
from llava_llama3.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from llava_llama3.conversation import conv_templates, SeparatorStyle | |
from llava_llama3.utils import disable_torch_init | |
from llava_llama3.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path | |
from llava_llama3.serve.cli import chat_llava | |
import requests | |
from io import BytesIO | |
import base64 | |
import os | |
import glob | |
import pandas as pd | |
from tqdm import tqdm | |
import json | |
root_path = os.path.dirname(os.path.abspath(__file__)) | |
print(f'\033[92m{root_path}\033[0m') | |
os.environ['GRADIO_TEMP_DIR'] = root_path | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-path", type=str, default="/mnt/nvme1n1/toby/LLaVA/checkpoints/0806_onlyllava_llava-finma-8B-v0.4-v8/checkpoint-2000") | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--conv-mode", type=str, default="llama_3") | |
parser.add_argument("--temperature", type=float, default=0.7) | |
parser.add_argument("--max-new-tokens", type=int, default=512) | |
parser.add_argument("--load-8bit", action="store_true") | |
parser.add_argument("--load-4bit", action="store_true") | |
args = parser.parse_args() | |
# Load model | |
tokenizer, llava_model, image_processor, context_len = load_pretrained_model( | |
args.model_path, | |
None, | |
'llava_llama3', | |
args.load_8bit, | |
args.load_4bit, | |
device=args.device) | |
def bot_streaming(message, history): | |
print(message) | |
image_file = None | |
if message["files"]: | |
if type(message["files"][-1]) == dict: | |
image_file = message["files"][-1]["path"] | |
else: | |
image_file = message["files"][-1] | |
else: | |
for hist in history: | |
if type(hist[0]) == tuple: | |
image_file = hist[0][0] | |
if image_file is None: | |
gr.Error("You need to upload an image for LLaVA to work.") | |
return | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
def generate(): | |
print('\033[92mRunning chat\033[0m') | |
output = chat_llava( | |
args=args, | |
image_file=image_file, | |
text=message['text'], | |
tokenizer=tokenizer, | |
model=llava_model, | |
image_processor=image_processor, | |
context_len=context_len, | |
streamer=streamer) | |
return output | |
thread = Thread(target=generate) | |
thread.start() | |
# thread.join() | |
buffer = "" | |
# output = generate() | |
for new_text in streamer: | |
buffer += new_text | |
generated_text_without_prompt = buffer | |
time.sleep(0.06) | |
yield generated_text_without_prompt | |
chatbot = gr.Chatbot(scale=1) | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
with gr.Blocks(fill_height=True) as demo: | |
gr.ChatInterface( | |
fn=bot_streaming, | |
title="FinLLaVA Demo", | |
examples=[ | |
{"text": "What is in this picture?", "files": ["http://images.cocodataset.org/val2017/000000039769.jpg"]}, | |
], | |
description="", | |
stop_btn="Stop Generation", | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
) | |
demo.queue(api_open=False) | |
demo.launch(show_api=False, share=False) |